While wide bandgap (WBG) switches have revolutionized power electronics and motor-drive systems, the high dv/dt associated with these fast-switching semiconductors can easily induce reflected high-frequency overvoltage spikes on motor stator terminals. The shorter rise time of the voltage pulses confines the cable length between the inverter and the motor in practice to avoid overvoltage across the motor stator windings. Even with shorter cables, voltage spikes from variable-speed drives can still cause premature insulation failure and reduce the remaining useful lifetime of the motors. While effective, conventional methods such as dv/dt passive filters or active gate drivers are usually bulky and/or inefficient. To address this problem, an overvoltage mitigation solution, named “Smart Coil,” is introduced in this article. The smart coil circuit is installed in parallel with the first coil of each motor phase, which typically experiences the highest reflected overvoltage. Upon detection of overvoltage, the proposed ultracompact smart coil circuit, located at the motor junction box, is activated to limit voltage stress across the coils. Since the smart coil is connected in parallel with the first coil, it only needs to process very low pulsed power during the overvoltage transients. Therefore, it has high efficiency and an ultracompact footprint while effectively mitigating voltage spikes. The proposed smart coil circuit can be easily scaled for various motor-drive systems regardless of the cable length or rise time of the switching devices. Simulation and experimental test results are provided to verify the effectiveness of the proposed method.
more »
« less
Smart Coils for Mitigation of Motor Reflected Overvoltage Fed by SiC Drives
High dv/dt from the emerging SiC variable-frequency drives can easily induce overvoltage across the motor stator winding terminals, especially for long-cable-connected and high-voltage motor-drive systems. Due to the fast switching speed and surge impedance mismatch between cables and motors, this overvoltage can be two times or even higher than the DC-bus voltage of the inverter, resulting in motor insulation degradation or irreversible breakdown. The most common solution to mitigate such overvoltage is to install a dv/dt or a sinewave filter at the output of the drive, which decreases the efficiency and power density of the system. Among different stator coils, the first one (close to the drive side) is the most susceptible to insulation breakdown since it experiences higher overvoltage than the others due to the nonlinear distribution of the reflected surge voltages. In this paper, an innovative high-efficiency ultracompact mitigation solution is introduced, which is a tiny auxiliary circuit embedded inside the motor stator (or at the motor terminal box), specifically across the first few coils of each phase (i.e., smart coils). The proposed smart coil circuit effectively mitigates the surge overvoltage, which can be scalable to any type of motor-drive systems, regardless of cable length and semiconductor rise time. The proposed solution can dramatically improve the reliability, efficiency, and power density of motor-drive systems.
more »
« less
- Award ID(s):
- 2135544
- PAR ID:
- 10473166
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-7539-6
- Page Range / eLocation ID:
- 1429 to 1436
- Format(s):
- Medium: X
- Location:
- Orlando, FL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-performance switching devices like SiC MOSFETs introduce high-frequency ringing and overvoltage transients at motor terminals, leading to uneven voltage distribution across windings. In SiC-driven motors, the first coil and initial turns experience significant overvoltage stress, increasing the risk of insulation degradation and inter-turn faults. This study proposes an analog circuit to mitigate overvoltage stress. The circuit detects high dv/dt in the first coil and adaptively inserts a ceramic capacitor via a GaN switch, forming a low-impedance path for high-frequency currents. This diverts part of the transient energy to the second coil, reducing stress on the first coil and promoting uniform voltage distribution. The GaN switch remains closed to sustain the high-frequency current path through the capacitor, adapting to different operating conditions and cable lengths. The circuit was prototyped and experimentally validated on a 2hp induction motor driven by a SiC inverter, demonstrating its effectiveness in mitigating overvoltage stress. This compact solution enhances the reliability of SiC-driven motor systems by addressing uneven high-frequency voltage distribution.more » « less
-
The increasing interest in employing wide-bandgap (WBG) drive systems has brought about very high power, high-frequency inverters enjoying switching frequencies up to hundreds of kilohertz. However, voltage surges with steep fronts, caused by turning semiconductor switches on/off in inverters, travel through the cable and are reflected at interfaces due to impedance mismatches, giving rise to overvoltages at motor terminals and in motor windings. The phenomena typically associated with these repetitive overvoltages are partial discharges and heating in the insulation system, both of which contribute to insulation system degradation and may lead to premature failures. In this article, taking the mentioned challenges into account, the repetitive transient overvoltage phenomenon in WBG drive systems is evaluated at motor terminals and in motor windings by implementing a precise multiconductor transmission line (MCTL) model in the time domain considering skin and proximity effects. In this regard, first, a finite element method (FEM) analysis is conducted in COMSOL Multiphysics to calculate parasitic elements of the motor; next, the vector fitting approach is employed to properly account for the frequency dependency of calculated elements, and, finally, the model is developed in EMTP-RV to assess the transient overvoltages at motor terminals and in motor windings. As shown, the harshest situation occurs in turns closer to motor terminals and/or turns closer to the neutral point depending on whether the neutral point is grounded or floating, how different phases are connected, and how motor phases are excited by pulse width modulation (PWM) voltages.more » « less
-
null (Ed.)Emerging applications of compact high-voltage SiC modules pose strong challenges in the module package insulation design. Such SiC module insulations are subjected to both high voltage DC and PWM excitations between different terminals during different switching intervals. High dV/dt strongly interferes with partial discharge (PD) testing as it is hard to distinguish PD pulses and PWM excitation induced interferences. This paper covers both the testing and modeling of PD phenomena in high-voltage power modules. A high dV/dt PD testing platform is proposed, which involves a Super-High-Frequency (SHF, >3GHz) down-mixing PD detection receiver and a high-voltage scalable square wave generator. The proposed method captures SHF PD signatures and determines PDIV for packaging insulation. Using this platform, this paper provides a group of PDIV comparisons of packaging insulation under DC and PWM waveforms and discloses discrepancies in these PDIV results with respect to their excitations. Based on these PD testing results, the paper further provides a model using space charge accumulation to explain the PD difference under DC and PWM waveforms. Both simulation and sample testing results are included in this paper to support this hypothesis. With this new model, the paper includes an updated insulation design procedure for high-voltage power modules.more » « less
-
Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor winding failure. This study proposes a wideband (WB) model of EV cables, developed in EMTP-RV, to improve transient voltage prediction accuracy compared to the traditional constant parameter (CP) model. Using a commercially available EV-dedicated cable, the WB model incorporates frequency-dependent parasitic effects calculated through the vector fitting technique. The motor design is supported by COMSOL Multiphysics and MATLAB 2023 simulations, leveraging the multi-conductor transmission line (MCTL) model for validation. Using practical data from the Toyota Prius 2010 model, including cable length, motor specifications, and power ratings, transient overvoltages generated by high-frequency inverters are studied. The proposed model demonstrates improved alignment with real-world scenarios, providing valuable insights into optimizing insulation systems for EV applications.more » « less
An official website of the United States government
