skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of sodium-bearing species in the interstellar medium
ABSTRACT Sodium-bearing species such as NaCl in the gas phase have been observed in an assortment of carbon-rich and oxygen-rich stellar atmospheres and interstellar environments such as the high-mass protostellar disc surrounding Orion Src1 and the proto-binary system, IRAS 16547−4247. Their detection in relatively low-temperature regions is yet to be made. In this paper, we consider the synthesis of sodium-bearing species with an emphasis on NaCl, via both gas-phase and grain-surface chemistry under assorted interstellar conditions. We also consider the chemistry leading to the gas-phase species NaH and NaOH. Two classes of numerical simulations were run: models under isothermal conditions at temperatures from 10 to 800 K with varied intervals, and three-phase warm-up models that consist of an initial isothermal collapse at 10 K, followed by a warm-up phase in which temperature rises linearly to 200 K, and finally a hot core phase. We have included reactive desorption for both models to produce gaseous NaCl, NaH, and NaOH. We found that for isothermal models over a broad parameter space, the fractional abundances of gaseous NaCl and NaOH can reach above 2 × 10−10 and approx. 1 × 10−10, respectively, are in the detection range of observational facilities such as Atacama Large Millimeter/Submillimeter Array and JWST. For warm-up models, we found that if we consider molecules to be co-desorbed with water, gaseous NaCl can have a sufficiently large abundance for detection. We then conclude that both gaseous NaCl and NaOH can be detected; however, more experiments and quantum mechanical calculations are needed to constrain the relevant reaction rates better.  more » « less
Award ID(s):
1906489
PAR ID:
10473626
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1722-1732
Size(s):
p. 1722-1732
Sponsoring Org:
National Science Foundation
More Like this
  1. The conformer distribution of normal-propyl cyanide is investigated using broadband chirped pulse rotational spectroscopy in the millimeter-wave regime coupled with buffer gas cooling. Here we explore the relative abundances of the anti and gauche conformers following room-temperature gas-phase injection into a 25 K buffer gas cell and compare to that which is observed following temperature-programmed desorption from an ice surface, similar to the slow warm-up experienced by ice grains as they approach warmer regions within the interstellar medium. The conformer distributions observed in the gas phase from room-temperature injection are then used to determine their relative energies, an important parameter needed to interpret the isomer and conformer abundances derived from astronomical observations. We find the gauche conformer to be the most stable species by ∼97 ± 21 cm−1. We further examine the relative conformer abundances following ice desorption, which are distinct from those following the gas-phase introduction. The ratios measured off the ice correspond to a conformer temperature of ∼56 K, which is much lower than their sublimation temperature of 170 K. 
    more » « less
  2. Context. Hot molecular cores correspond to the phase of star formation during which many molecules, in particular complex organic molecules (COMs), thermally desorb from the surface of dust grains. Sophisticated kinetic models of interstellar chemistry describe the processes that lead to the formation and subsequent evolution of COMs in star-forming regions. Aims. Our goal is to derive the chemical composition of hot cores in order to improve our understanding of interstellar chemistry. In particular, we want to test the models by comparing their predictions to the observed composition of the gas phase of hot cores. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an imaging spectral line survey of the high mass star-forming region Sagittarius B2(N) at 3 mm, called Re-exploring Molecular Complexity with ALMA (ReMoCA). We modeled under the assumption of local thermodynamic equilibrium the spectra obtained with this survey toward the sources embedded in the secondary hot core Sgr B2(N2). We compared the chemical composition of these sources to that of sources from the literature and to predictions of the chemical kinetics model MAGICKAL. Results. We detected up to 58 molecules toward Sgr B2(N2)’s hot cores, including up to 24 COMs, as well as many less abundant isotopologs. The compositions of some pairs of sources are well correlated, but differences also exist, in particular for HNCO and NH2CHO. The abundances of series of homologous molecules drop by about one order of magnitude at each further step in complexity. The nondetection of radicals yields stringent constraints on the models. The comparison to the chemical models confirms previous evidence of a high cosmic-ray ionization rate in Sgr B2(N). The comparison to sources from the literature gives a new insight into chemical differentiation. The composition of most hot cores of Sgr B2(N2) is tightly correlated to that of the hot core G31.41+0.31 and the hot corino IRAS 16293–2422 B after normalizing the abundances by classes of molecules (O-bearing, N-bearing, O+N-bearing, and S-bearing). There is no overall correlation between Sgr B2(N2) and the shocked region G+0.693−0.027 also located in Sgr B2, and even less with the cold starless core TMC-1. The class of N-bearing species reveals the largest variance among the four classes of molecules. The S-bearing class shows in contrast the smallest variance. Conclusions. These results imply that the class of N-bearing molecules reacts more sensitively to shocks, low-temperature gas phase chemistry after nonthermal desorption, or density. The overall abundance shifts observed between the N-bearing and O-bearing molecules may indicate how violently and completely the ice mantles are desorbed. 
    more » « less
  3. Abstract Chemical models and experiments indicate that interstellar dust grains and their ice mantles play an important role in the production of complex organic molecules (COMs). To date, the most complex solid-phase molecule detected with certainty in the interstellar medium is methanol, but the James Webb Space Telescope (JWST) may be able to identify still larger organic species. In this study, we use a coupled chemodynamical model to predict new candidate species for JWST detection toward the young star-forming core Cha-MMS1, combining the gas–grain chemical kinetic code MAGICKAL with a 1D radiative hydrodynamics simulation using Athena++ . With this model, the relative abundances of the main ice constituents with respect to water toward the core center match well with typical observational values, providing a firm basis to explore the ice chemistry. Six oxygen-bearing COMs (ethanol, dimethyl ether, acetaldehyde, methyl formate, methoxy methanol, and acetic acid), as well as formic acid, show abundances as high as, or exceeding, 0.01% with respect to water ice. Based on the modeled ice composition, the infrared spectrum is synthesized to diagnose the detectability of the new ice species. The contribution of COMs to IR absorption bands is minor compared to the main ice constituents, and the identification of COM ice toward the core center of Cha-MMS1 with the JWST NIRCAM/Wide Field Slitless Spectroscopy (2.4–5.0 μ m) may be unlikely. However, MIRI observations (5–28 μ m) toward COM-rich environments where solid-phase COM abundances exceed 1% with respect to the column density of water ice might reveal the distinctive ice features of COMs. 
    more » « less
  4. Abstract (Mg,Fe)O ferropericlase‐magnesiowüstite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser‐heated diamond anvil cell and first‐principles calculations determine the solubility of sodium and favorability of sodium incorporation in iron‐rich magnesiowüstite relative to (Mg,Fe)SiO3bridgmanite. Reaction of Mg/(Mg + Fe) (Mg#) 55 and 28 olivine with NaCl at 33–128 GPa and 1600–3000 K produces iron‐rich magnesiowüstite containing several percent sodium, while iron‐rich bridgmanite contains little to no detectable sodium. In sodium‐saturated magnesiowüstite, sodium number [Na/(Na + Mg + Fe)] is 2–5 atomic percent at pressures below 60 GPa and drastically increases to 10–20 atomic percent at deep lower mantle pressures. For these two compositions, there is no significant dependence of the results on Mg#. Our calculations not only show consistent results with experiments but further indicate that such an increase in solubility and partitioning of Na into magnesiowüstite is driven by the spin transition in iron. These results provide fundamental constraints on the crystal chemistry of sodium at lower‐mantle conditions. If the sodium capacity of (Mg,Fe)O is not strongly dependent on Mg#, (Mg,Fe)O in the lower mantle may have the capacity to store the entire sodium budget of the Earth. 
    more » « less
  5. Abstract We present Atacama Large Millimeter/submillimeter Array Band 3 data toward five massive young stellar objects (MYSOs), and investigate relationships between unsaturated carbon-chain species and saturated complex organic molecules (COMs). An HC 5 N ( J = 35–34) line has been detected from three MYSOs, where nitrogen (N)-bearing COMs (CH 2 CHCN and CH 3 CH 2 CN) have been detected. The HC 5 N spatial distributions show compact features and match with a methanol (CH 3 OH) line with an upper-state energy around 300 K, which should trace hot cores. The hot regions are more extended around the MYSOs where N-bearing COMs and HC 5 N have been detected compared to two MYSOs without these molecular lines, while there are no clear differences in the bolometric luminosity and temperature. We run chemical simulations of hot-core models with a warm-up stage, and compare with the observational results. The observed abundances of HC 5 N and COMs show good agreements with the model at the hot-core stage with temperatures above 160 K. These results indicate that carbon-chain chemistry around the MYSOs cannot be reproduced by warm carbon-chain chemistry, and a new type of carbon-chain chemistry occurs in hot regions around MYSOs. 
    more » « less