skip to main content


Title: Shapley Values and Meta-Explanations for Probabilistic Graphical Model Inference
Probabilistic graphical models, such as Markov random fields (MRF), exploit dependencies among random variables to model a rich family of joint probability distributions. Inference algorithms, such as belief propagation (BP), can effectively compute the marginal posteriors for decision making. Nonetheless, inferences involve sophisticated probability calculations and are difficult for humans to interpret. Among all existing explanation methods for MRFs, no method is designed for fair attributions of an inference outcome to elements on the MRF where the inference takes place. Shapley values provide rigorous attributions but so far have not been studied on MRFs. We thus define Shapley values for MRFs to capture both probabilistic and topological contributions of the variables on MRFs. We theoretically characterize the new definition regarding independence, equal contribution, additivity, and submodularity. As brute-force computation of the Shapley values is challenging, we propose GraphShapley, an approximation algorithm that exploits the decomposability of Shapley values, the structure of MRFs, and the iterative nature of BP inference to speed up the computation. In practice, we propose meta-explanations to explain the Shapley values and make them more accessible and trustworthy to human users. On four synthetic and nine real-world MRFs, we demonstrate that GraphShapley generates sensible and practical explanations.  more » « less
Award ID(s):
1931042
NSF-PAR ID:
10184256
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM'2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jaeger, Manfred ; Nielsen, Thomas Dyhre (Ed.)
    Almost all of the work in graphical models for game theory has mirrored previous work in probabilistic graphical models. Our work considers the opposite direction: Taking advantage of advances in equilibrium computation for probabilistic inference. In particular, we present formulations of inference problems in Markov random fields (MRFs) as computation of equilibria in a certain class of game-theoretic graphical models. While some previous work explores this direction, we still lack a more precise connection between variational probabilistic inference in MRFs and correlated equilibria. This paper sharpens the connection, which helps us exploit relatively more recent theoretical and empirical results from the literature on algorithmic and computational game theory on the tractable, polynomial-time computation of exact or approximate correlated equilibria in graphical games with arbitrary, loopy graph structure. Our work discusses how to design new algorithms with equally tractable guarantees for the computation of approximate variational inference in MRFs. In addition, inspired by a previously stated game-theoretic view of tree-reweighted message-passing techniques for belief inference as a zero-sum game, we propose a different, general-sum potential game to design approximate fictitious-play techniques. Empirical evaluations on synthetic experiments and on an application to soft de-noising on real-world image datasets illustrate the performance of our proposed approach and shed some light on the conditions under which the resulting belief inference algorithms may be most effective relative to standard state-of-the-art methods. 
    more » « less
  2. Francisco Ruiz, Jennifer Dy (Ed.)
    Graphical models such as Markov random fields (MRFs) that are associated with undirected graphs, and Bayesian networks (BNs) that are associated with directed acyclic graphs, have proven to be a very popular approach for reasoning under uncertainty, prediction problems and causal inference. Parametric MRF likelihoods are well-studied for Gaussian and categorical data. However, in more complicated parametric and semi-parametric set- tings, likelihoods specified via clique potential functions are generally not known to be congenial (jointly well-specified) or non-redundant. Congenial and non-redundant DAG likelihoods are far simpler to specify in both parametric and semi-parametric settings by modeling Markov factors in the DAG factorization. However, DAG likelihoods specified in this way are not guaranteed to coincide in distinct DAGs within the same Markov equivalence class. This complicates likelihoods based model selection procedures for DAGs by “sneaking in” potentially un- warranted assumptions about edge orientations. In this paper we link a density function decomposition due to Chen with the clique factorization of MRFs described by Lauritzen to provide a general likelihood for MRF models. The proposed likelihood is composed of variationally independent, and non-redundant closed form functionals of the observed data distribution, and is sufficiently general to apply to arbitrary parametric and semi-parametric models. We use an extension of our developments to give a general likelihood for DAG models that is guaranteed to coincide for all members of a Markov equivalence class. Our results have direct applications for model selection and semi-parametric inference. 
    more » « less
  3. We propose a symbolic execution method for programs that can draw random samples. In contrast to existing work, our method can verify randomized programs with unknown inputs and can prove probabilistic properties that universally quantify over all possible inputs. Our technique augments standard symbolic execution with a new class of probabilistic symbolic variables , which represent the results of random draws, and computes symbolic expressions representing the probability of taking individual paths. We implement our method on top of the KLEE symbolic execution engine alongside multiple optimizations and use it to prove properties about probabilities and expected values for a range of challenging case studies written in C++, including Freivalds’ algorithm, randomized quicksort, and a randomized property-testing algorithm for monotonicity. We evaluate our method against Psi, an exact probabilistic symbolic inference engine, and Storm, a probabilistic model checker, and show that our method significantly outperforms both tools. 
    more » « less
  4. Kuijjer, Marieke (Ed.)
    Abstract Motivation Biological processes are regulated by underlying genes and their interactions that form gene regulatory networks (GRNs). Dysregulation of these GRNs can cause complex diseases such as cancer, Alzheimer’s and diabetes. Hence, accurate GRN inference is critical for elucidating gene function, allowing for the faster identification and prioritization of candidate genes for functional investigation. Several statistical and machine learning-based methods have been developed to infer GRNs based on biological and synthetic datasets. Here, we developed a method named AGRN that infers GRNs by employing an ensemble of machine learning algorithms. Results From the idea that a single method may not perform well on all datasets, we calculate the gene importance scores using three machine learning methods—random forest, extra tree and support vector regressors. We calculate the importance scores from Shapley Additive Explanations, a recently published method to explain machine learning models. We have found that the importance scores from Shapley values perform better than the traditional importance scoring methods based on almost all the benchmark datasets. We have analyzed the performance of AGRN using the datasets from the DREAM4 and DREAM5 challenges for GRN inference. The proposed method, AGRN—an ensemble machine learning method with Shapley values, outperforms the existing methods both in the DREAM4 and DREAM5 datasets. With improved accuracy, we believe that AGRN inferred GRNs would enhance our mechanistic understanding of biological processes in health and disease. Availabilityand implementation https://github.com/DuaaAlawad/AGRN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Summary

    In this article, we first propose a Bayesian neighborhood selection method to estimate Gaussian Graphical Models (GGMs). We show the graph selection consistency of this method in the sense that the posterior probability of the true model converges to one. When there are multiple groups of data available, instead of estimating the networks independently for each group, joint estimation of the networks may utilize the shared information among groups and lead to improved estimation for each individual network. Our method is extended to jointly estimate GGMs in multiple groups of data with complex structures, including spatial data, temporal data, and data with both spatial and temporal structures. Markov random field (MRF) models are used to efficiently incorporate the complex data structures. We develop and implement an efficient algorithm for statistical inference that enables parallel computing. Simulation studies suggest that our approach achieves better accuracy in network estimation compared with methods not incorporating spatial and temporal dependencies when there are shared structures among the networks, and that it performs comparably well otherwise. Finally, we illustrate our method using the human brain gene expression microarray dataset, where the expression levels of genes are measured in different brain regions across multiple time periods.

     
    more » « less