Defect mode induced energy trapping at the bandgap frequency of a phononic crystal has been widely explored. Unlike this extensively used mechanism, this work reports the use of nonreciprocity in the transmission band to trap energy inside a phononic crystal cavity. Passive nonreciprocity is due to natural viscosity of the background liquid (water) and asymmetry of aluminum scatterers. The level of nonresonant energy trapping was compared for three cavities with different symmetry. Enhancement of energy trapping at a frequency of 624 kHz was observed experimentally for the cavity where nonreciprocity suppresses acoustic radiation into environment. Experimental results were further investigated and confirmed using finite element numerical analysis.
more »
« less
Analysis of geometric defects in square locally resonant phononic crystals: A comparative study of modeling approaches
Phononic crystals can develop defects during manufacturing that alter the desired dynamic response and bandgap behavior. This frequency behavior change can enable successful defect inspection if the characteristic defect response is known. In this study, the behavior of a defective square unit cell comprising a freed and shortened leg is studied using a wave finite element method and an approximate continuous-lumped model to elucidate the defect induced qualitative dynamical features. These metrics are a computationally inexpensive alternative to modeling a defective unit cell within a large pristine array entirely in finite elements. The accuracy of these models is validated by comparing the result to a full finite element model. The impact of a shortened unit cell leg on the behaviors of an infinite array of defective cells and a finite array with a single defect are successfully predicted through dispersion curves and frequency response functions, respectively. These methods reveal defect-induced modes that split the local resonance bandgap of the pristine cell, as well as new anti-resonances resulting from the shortened leg. The study uses both approaches to evaluate the effect of defects in complex phononic crystal geometries and provides a comparative evaluation of the results of each model.
more »
« less
- Award ID(s):
- 1847254
- PAR ID:
- 10473904
- Editor(s):
- Vladislav Sergeevich Sorokin
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of the Acoustical Society of America
- Volume:
- 154
- Issue:
- 5
- ISSN:
- 0001-4966
- Page Range / eLocation ID:
- 3052 to 3061
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The acoustic response of defect‐based acoustic interferometer‐like designs, known as Coupled Resonator Acoustic Waveguides (CRAWs), in 2D phononic crystals (PnCs) is reported. The PnC is composed of steel cylinders arranged in a square lattice within a water matrix with defects induced by selectively removing cylinders to create Mach‐Zehnder‐like (MZ) defect‐based interferometers. Two defect‐based acoustic interferometers of MZ‐type are fabricated, one with arms oriented horizontally and another one with arms oriented diagonally, and their transmission features are experimentally characterized using ultrasonic spectroscopy. The experimental data are compared with finite element method (FEM) simulations and with tight‐binding (TB) calculations in which each defect is treated as a resonator coupled to its neighboring ones. Significantly, the results exhibit excellent agreement indicating the reliability of the proposed approach. This comprehensive match is of paramount importance for accurately predicting and optimizing resonant modes supported by defect arrays, thus enabling the tailoring of phononic structures and defect‐based waveguides to meet specific requirements. This successful implementation of FEM and TB calculations in investigating CRAWs systems within PnCs paves the way for designing advanced acoustic devices with desired functionalities for various practical applications, demonstrating the application of solid‐state electronics principles to underwater acoustic devices description.more » « less
-
Bandgaps, or frequency ranges of forbidden wave propagation, are a hallmark of phononic crystals (PnCs). Unlike their lattice counterparts, PnCs taking the form of continuous structures exhibit an infinite number of bandgaps of varying location, bandwidth, and distribution along the frequency spectrum. While these bandgaps are commonly predicted from benchmark tools such as the Bloch-wave theory, the conditions that dictate the patterns associated with bandgap symmetry, attenuation, or even closing in multi-bandgap PnCs remain an enigma. In this work, we establish these patterns in one-dimensional rods undergoing longitudinal motion via a canonical transfer-matrix-based approach. In doing so, we connect the conditions governing bandgap formation and closing to their physical origins in the context of the Bragg condition (for infinite media) and natural resonances (for finite counterparts). The developed framework uniquely characterizes individual bandgaps within a larger dispersion spectrum regardless of their parity (i.e., odd versus even bandgaps) or location (low versus high-frequency), by exploiting dimensionless constants of the PnC unit cell which quantify the different contrasts between its constitutive layers. These developments are detailed for a bi-layered PnC and then generalized for a PnC of any number of layers by increasing the model complexity. We envision this mathematical development to be a future standard for the realization of hierarchically structured PnCs with prescribed and finely tailored bandgap profiles.more » « less
-
Abstract Phononic crystals exhibit Bragg bandgaps, frequency regions within which wave propagation is forbidden. In solid continua, bandgaps are the outcome of destructive interferences resulting from periodically alternating material layers. Under certain conditions, natural frequencies emerge within these bandgaps in the form of high‐amplitude localized vibrations near a structural boundary, referred to as truncation resonances. In this paper, the vibrational spectrum of finite phononic crystals which take the form of a one‐dimensional rod is investigated and the factors that contribute to the origination of truncation resonances are explained. By identifying a unit cell symmetry parameter, a family of finite phononic rods, which share the same dispersion relation, yet distinct truncated forms, is defined. A transfer matrix method is utilized to derive closed‐form expressions of the characteristic equations governing the natural frequencies of the finite system and decipher the truncation resonances emerging across different boundary conditions. The analysis establishes concrete connections between the localized vibrations associated with a truncation resonance, boundary conditions, and the overall configuration of the truncated chain as dictated by unit cell choice. The study provides tools to predict, tune, and selectively design truncation resonances, to meet the demands of various applications that require and uniquely benefit from such truncation resonances.more » « less
-
null (Ed.)Phononic crystals have the ability to manipulate the propagation of elastic waves in solids by generating unique dispersion characteristics. They can modify the conventional behavior of wave spreading in isotropic materials, known as attenuation, which negatively influences the ability of acoustic emission method to detect active defects in long-range, pipe-like structures. In this study, pipe geometry is reconfigured by adding gradient-index (GRIN) phononic crystal lens to improve the propagation distance of waves released by active defects such as crack growth and leak. The sensing element is designed to form a ring around the pipe circumference to capture the plane wave with the improved amplitude. The GRIN lens is designed by a special gradient-index profile with varying height stubs adhesively bonded to the pipe surface. The performance of GRIN lens for improving the amplitude of localized sources is demonstrated with finite element numerical model using multiphysics software. Experiments are conducted using pencil lead break simulating crack growth, as well as an orifice with pressured pipe simulating leak. The amplitude of the burst-type signal approximately doubles on average, validating the numerical findings. Hence, the axial distance between sensors can be increased proportionally in the passive sensing of defects in pipe-like geometries.more » « less
An official website of the United States government

