skip to main content


This content will become publicly available on July 1, 2024

Title: A Comparison between Triphenylmethyl and Triphenylsilyl Spirobifluorenyl Hosts: Synthesis, Photophysics and Performance in Phosphorescent Organic Light-Emitting Diodes

This study presents the synthesis and characterization of two spirobifluorenyl derivatives substituted with either triphenylmethyl (SB-C) or triphenylsilyl (SB-Si) moieties for use as host materials in phosphorescent organic light-emitting diodes (PHOLED). Both molecules have similar high triplet energies and large energy gaps. Blue Ir(tpz)3 and green Ir(ppy)3 phosphorescent devices were fabricated using these materials as hosts. Surprisingly, SB-Si demonstrated superior charge-transporting ability compared to SB-C, despite having similar energies for their valence orbitals. In particular, SB-Si proved to be a highly effective host for both blue and green devices, resulting in maximum efficiencies of 12.6% for the Ir(tpz)3 device and 9.6% for the Ir(ppy)3 device. These results highlight the benefits of appending the triphenylsilyl moiety onto host materials and underscore the importance of considering the morphology of hosts in the design of efficient PHOLEDs.

 
more » « less
Award ID(s):
2018740
NSF-PAR ID:
10474081
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molecules
Volume:
28
Issue:
13
ISSN:
1420-3049
Page Range / eLocation ID:
5241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  2. Current commercial batteries are mainly metal based, with metal elements in charge carriers and/or electrode materials, which poses potential economic and environmental concerns due to the heavy use of nonrenewable metals. Thus, metal-free batteries present a unique opportunity as sustainable energy storage devices, though the relevant research is still in its infancy. Herein, we present an all-organic metal-free NH 4 + ion full battery that can operate at a low temperature of 0 °C, by using polypyrrole (PPy) as the cathode, polyaniline (PANI) as the anode, and 19 m ammonium acetate aqueous solution as electrolyte. For the first time, PPy is demonstrated as a high-capacity host material for both NH 4 + and K + storage, when cycled in water in salt electrolytes (WiSEs). When tested in a three-electrode cell containing 25 m NH 4 CH 3 COO electrolyte, PPy exhibits an impressive capacity of 125 mA h g −1 at a specific current of 1 A g −1 and retains 43.61 mA h g −1 at 25 A g −1 . Additionally, a full battery is assembled using the PPy cathode and PANI anode coupled with 19 m NH 4 CH 3 COO WiSE. This battery is found to deliver a capacity of 78.405 mA h g −1 at 25 °C and 49.083 mA h g −1 at 0 °C with a capacity retention of 71.83% after 200 cycles, demonstrating its potential for operations at low temperatures. Additionally, the physiochemical properties of NH 4 + -based WiSEs are examined by Raman and nuclear magnetic resonance (NMR) spectroscopies, to explore their electrochemical behaviors and the fundamental effect of salt concentration on the electrolyte characteristics. This study presents the first non-metal battery with potential for low-temperature applications and opens the door to future metal-free electronics that would generate long-term benefits to the environment. 
    more » « less
  3. Abstract

    Two bipolar host materials3‐CBPyand4‐mCBPyare reported. These hosts are structural analogs of the common host materials CBP and mCBP wherein the phenyl rings have been replaced with pyridines. The two materials possess deep highest occupied molecular orbital (HOMO) and shallow lowest unoccupied molecular orbital (LUMO) levels along with sufficiently high energyS1andT1states that make them suitable hosts for yellow emitters in electroluminescent devices. Yellow‐emitting thermally activated delayed fluorescence organic light‐emitting diodes are fabricated using 2,4,6‐tris (4‐(10H‐phenoxazin‐10‐yl)phenyl)‐1,3,5‐triazine (tri‐PXZ‐TRZ) as the dopant emitter with either3‐CBPyor4‐mCBPyemployed as the host. Their device performance is compared to analogous devices using CBP and mCBP as host materials. The pyridine‐containing host devices show markedly improved external quantum efficiencies (EQE) and decreased roll‐off. The 7 wt% tri‐PXZ‐TRZ‐doped device exhibits very low turn‐on voltage (2.5 V for both3‐CBPyand4‐mCBPy) along with maximum external quantum efficiencies (EQEmax) reaching 15.6% (for3‐CBPy) and 19.4% (for4‐mCBPy). The device using4‐mCBPyalso exhibits very low efficiency roll‐off with an EQE of 16.0% at a luminance of 10 000 cd m−2.

     
    more » « less
  4. Abstract

    Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, integration of PCMs with nanophotonic structures has introduced a new paradigm for non‐volatile reconfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3has recently emerged as a wide‐bandgap PCM with transparency windows ranging from 610 nm to near‐IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3are experimentally demonstrated for the first time in integrated photonic platforms at both 750 and 1550 nm. As opposed to silicon, the thermo‐optic coefficient of Sb2S3is shown to be negative, making the Sb2S3–Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3integrated non‐volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30 dB. This work experimentally verifies prominent phase modification and low loss of Sb2S3in wavelength ranges relevant for both solid‐state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post‐fabrication trimming, and large‐scale integrated quantum photonic network.

     
    more » « less
  5. Abstract

    n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.

     
    more » « less