Abstract In this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE. The scheme is a commonly used spatial mesh adaptation method based on equidistributing the arclength of the solution under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range interactions that we derived in Hupkes and Van Vleck (J Dyn Differ Equ 28:955, 2016). For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is a spatially stretched and twisted version of the standard second order differential operator that is associated to the PDE waves.
more »
« less
Travelling Waves for Adaptive Grid Discretizations of Reaction Diffusion Systems III: Nonlinear Theory
Abstract In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE and establish the existence of travelling waves. In particular, we consider the time dependent spatial mesh adaptation method that aims to equidistribute the arclength of the solution under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range interactions that we derived in Hupkes and Van Vleck (J Dyn Differ Eqn, 2021). Using the Fredholm theory developed in Hupkes and Van Vleck (J Dyn Differ Eqn, 2021) we setup a fixed point procedure that enables the travelling PDE waves to be lifted to our spatially discrete setting.
more »
« less
- Award ID(s):
- 1714195
- PAR ID:
- 10474440
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Dynamics and Differential Equations
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 1040-7294
- Format(s):
- Medium: X Size: p. 2743-2811
- Size(s):
- p. 2743-2811
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE. In particular, we consider a commonly used time dependent moving mesh method that aims to equidistribute the arclength of the solution under consideration. We assume that the discrete analogue of this equidistribution is strictly enforced, which allows us to reduce the effective dynamics to a scalar non-local problem with infinite range interactions. We show that this reduced problem is well-posed and obtain useful estimates on the resulting nonlinearities. In the sequel papers (Hupkes and Van Vleck in Travelling waves for adaptive grid discretizations of reaction diffusion systems II: linear theory; Travelling waves for adaptive grid discretizations of reaction diffusion systems III: nonlinear theory) we use these estimates to show that travelling waves persist under these adaptive spatial discretizations.more » « less
-
We extend the methodology in Yang et al. [SIAM J. Appl. Dyn. Syst. 22, 269–310 (2023)] to learn autonomous continuous-time dynamical systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed approach.more » « less
-
null (Ed.)In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. ( J. Fluid Mech. , vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas ( J. Fluid Mech. , vol. 689, 2011, pp. 129–148) and Haut & Ablowitz ( J. Fluid Mech. , vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.more » « less
-
Abstract We introduce and study the spatial replicator equation with higher order interactions and both infinite (spatially homogeneous) populations and finite (spatially inhomogeneous) populations. We show that in the special case of three strategies (rock–paper–scissors) higher order interaction terms allow travelling waves to emerge in non-declining finite populations. We show that these travelling waves arise from diffusion stabilisation of an unstable interior equilibrium point that is present in the aspatial dynamics. Based on these observations and prior results, we offer two conjectures whose proofs would fully generalise our results to all odd cyclic games, both with and without higher order interactions, assuming a spatial replicator dynamic. Intriguingly, these generalisations for strategies seem to require declining populations, as we show in our discussion.more » « less
An official website of the United States government
