skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Secondary Production of Ice in Cumulus Experiment (SPICULE)
Abstract The secondary ice process (SIP) is a major microphysical process, which can result in rapid enhancement of ice particle concentration in the presence of preexisting ice. SPICULE was conducted to further investigate the effect of collision–coalescence on the rate of the fragmentation of freezing drop (FFD) SIP mechanism in cumulus congestus clouds. Measurements were conducted over the Great Plains and central United States from two coordinated aircraft, the NSF Gulfstream V (GV) and SPEC Learjet 35A, both equipped with state-of-the-art microphysical instrumentation and vertically pointing W- and Ka-band radars, respectively. The GV primarily targeted measurements of subcloud aerosols with subsequent sampling in warm cloud. Simultaneously, the Learjet performed multiple penetrations of the ascending cumulus congestus (CuCg) cloud top. First primary ice was typically detected at temperatures colder than −10°C, consistent with measured ice nucleating particles. Subsequent production of ice via FFD SIP was strongly related to the concentration of supercooled large drops (SLDs), with diameters from about 0.2 to a few millimeters. The concentration of SLDs is directly linked to the rate of collision–coalescence, which depends primarily on the subcloud aerosol size distribution and cloud-base temperature. SPICULE supports previous observational results showing that FFD SIP efficiency could be deduced from the product of cloud-base temperature and maximum diameter of drops measured ∼300 m above cloud base. However, new measurements with higher concentrations of aerosol and total cloud-base drop concentrations show an attenuating effect on the rate of coalescence. The SPICULE dataset provides rich material for validation of numerical schemes of collision–coalescence and SIP to improve weather prediction simulations  more » « less
Award ID(s):
1917519 1917510
PAR ID:
10474570
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
104
Issue:
1
ISSN:
0003-0007
Page Range / eLocation ID:
E51 to E76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An atmospheric river affecting Australia and the Southern Ocean on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) is analyzed using nadir‐pointing W‐band cloud radar measurements and in situ microphysical measurements from a Gulfstream‐V aircraft. The AR had a two‐band structure, with the westernmost band associated with a cold frontal boundary. The bands were primarily stratiform with distinct radar bright banding. The microphysical evolution of precipitation is described in the context of the tropical‐ and midlatitude‐sourced moisture zones above and below the 0°C isotherm, respectively, identified in Part I. In the tropical‐sourced moisture zone, ice particles at temperatures less than −8°C had concentrations on the order of 10 L−1, with habits characteristic of lower temperatures, while between −8°C and −4°C, an order of magnitude increase in ice particle concentrations was observed, with columnar habits consistent with Hallett‐Mossop secondary ice formation. Ice particles falling though the 0°C level into the midlatitude‐sourced moisture region and melting provided “seed” droplets from which subsequent growth by collision‐coalescence occurred. In this region, raindrops grew to sizes of 3 mm and precipitation rates averaged 16 mm hr−1
    more » « less
  2. Abstract Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds. 
    more » « less
  3. null (Ed.)
    Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain. 
    more » « less
  4. null (Ed.)
    Abstract In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case. 
    more » « less
  5. Single- and multi-layer clouds are commonly observed over the Southern Ocean in varying synoptic settings, yet few studies have characterized and contrasted their properties. This study provides a statistical analysis of the microphysical properties of single- and multi-layer clouds using in-situ observations acquired during the Southern Ocean Cloud-Radiation Aerosol Transport Experimental Study. The relative frequencies of ice-containing samples (i.e., mixed and ice phase) for multi-layer clouds are 0.05–0.25 greater than for single-layer clouds, depending on cloud layer height. In multi-layer clouds, the lowest cloud layers have the highest ice-containing sample frequencies, which decrease with increasing cloud layer height up to the third highest cloud layer. This suggests a prominent seeder-feeder mechanism over the region. Ice nucleating particle (cloud condensation nuclei) concentrations are positively (negatively) correlated with ice-containing sample frequencies in select cases. Differences in microphysical properties are observed for single- and multi-layer clouds. Drop concentrations (size distributions) are greater (narrower) for single-layer clouds compared with the lowest multi-layer clouds. When differentiating cloud layers by top (single- and highest multi-layer clouds) and non-top layers (underlying multi-layer clouds), total particle size distributions (including liquid and ice) are similarly broader for non-top cloud layers. Additionally, drop concentrations in coupled environments are approximately double those in decoupled environments. 
    more » « less