A long-standing fundamental open problem in mathematical fluid dynamics and nonlinear partial differential equations is to determine whether solutions of the 3D incompressible Euler equations can develop a finite-time singularity from smooth, finite-energy initial data. Leonhard Euler introduced these equations in 1757 [L. Euler,Mémoires de l’Académie des Sci. de Berlin11, 274–315 (1757).], and they are closely linked to the Navier–Stokes equations and turbulence. While the general singularity formation problem remains unresolved, we review a recent computer-assisted proof of finite-time, nearly self-similar blowup for the 2D Boussinesq and 3D axisymmetric Euler equations in a smooth bounded domain with smooth initial data. The proof introduces a framework for (nearly) self-similar blowup, demonstrating the nonlinear stability of an approximate self-similar profile constructed numerically via the dynamical rescaling formulation.
more »
« less
The linearized 3d Euler equations with inflow, outflow
In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.
more »
« less
- Award ID(s):
- 1909103
- PAR ID:
- 10474810
- Publisher / Repository:
- Khayyam Publishing, Inc.
- Date Published:
- Journal Name:
- Advances in Differential Equations
- Volume:
- 28
- Issue:
- 5/6
- ISSN:
- 1079-9389
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.more » « less
-
Tobias Ekholm (Ed.)We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved.more » « less
-
The 3D incompressible Euler equations in a bounded domain are most often supplemented with impermeable boundary conditions, which constrain the fluid to neither enter nor leave the domain. We establish well-posedness with inflow, outflow of velocity when either the full value of the velocity is specified on inflow, or only the normal component is specified along with the vorticity (and an additional constraint). We derive compatibility conditions to obtain regularity in a Hölder space with prescribed arbitrary index, and allow multiply connected domains. Our results apply as well to impermeable boundaries, establishing higher regularity of solutions in Hölder spaces.more » « less
-
Abstract We review some recent developments in mathematical aspects of relativistic fluids. The goal is to provide a quick entry point to some research topics of current interest that is accessible to graduate students and researchers from adjacent fields, as well as to researches working on broader aspects of relativistic fluid dynamics interested in its mathematical formalism. Instead of complete proofs, which can be found in the published literature, here we focus on the proofs’ main ideas and key concepts. After an introduction to the relativistic Euler equations, we cover the following topics: a new wave-transport formulation of the relativistic Euler equations tailored to applications; the problem of shock formation for relativistic Euler; rough (i.e., low-regularity) solutions to the relativistic Euler equations; the relativistic Euler equations with a physical vacuum boundary; relativistic fluids with viscosity. We finish with a discussion of open problems and future directions of research.more » « less
An official website of the United States government

