As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%.
more »
« less
Renewable-based charging in green ride-sharing
Abstract Governments, regulatory bodies, and manufacturers are proposing plans to accelerate the adoption of electric vehicles (EVs), with the goal of reducing the impact of greenhouse gases and pollutants from internal combustion engines on human health and climate change. In this context, the paper considers a scenario where ride-sharing enterprises utilize a 100%-electrified fleet of vehicles, and seeks responses to the following key question: How can renewable-based EV charging be maximized without disrupting the quality of the ride-sharing services? We propose a new mechanism to promote EV charging during hours of high renewable generation, and we introduce the concept ofcharge request, which is issued by a power utility company. Our mechanism is inspired by a game-theoretic approach where the power utility company proposes incentives and the ride-sharing platform assigns vehicles to both ride and charge requests; the bargaining mechanism leads to prices and EV assignments that are aligned with the notion of Nash equilibria. Numerical results show that it is possible to shift the EV charging during periods of high renewable generation and adapt to intermittent generation while minimizing the impact on the quality of service. The paper also investigates how the users’ willingness to ride-share affects the charging strategy and the quality of service.
more »
« less
- Award ID(s):
- 1941896
- PAR ID:
- 10475827
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB. These simulations aim to develop a better understanding of the potential impacts of electric vehicles in smart grids, such as power quality and monetary benefits for utility companies and electric vehicle usersmore » « less
-
Electrifying the ride-hailing services has the potential to significantly reduce greenhouse gas emissions in the shared mobility sector. However, these emission reduction benefits depend on the utilization of EVs to serve trip requests, especially during the fleet electrification process. In this paper, we evaluated the performance and emission impacts of ride-hailing service with three dispatching policies and various EV penetration levels in the ride-hailing fleet. A large-scale simulation platform was developed for the city of San Francisco in SUMO to enable the application of ride-hailing, electric vehicle charging, and idle vehicle repositioning. Simulation results indicate that with a 60% EVs in the simulated fleet, the off-peak EV priority policy and off-peak EV only policy can reduce CO2 emissions by 32% - 40% while preserving the mobility performance in terms of deadheading, total travel distance, and average rider pick-up time. It is important for ride-hailing platforms to increase the zero-emission rides and encourage ride pooling to comply with California’s Clean Miles Standard.more » « less
-
Electric vehicles (EVs) have been used in the ride-hailing system in recent years, which brings the electric fleet management problem (EFMP) critical. This paper aims to leverage multi-agent reinforcement learning (MARL) in EFMP. In particular, we focus on how EVs learn to manage battery charging, pick up and drop off passengers. We propose an integrated SUMO-Gym framework based on the SUMO simulator to capture EVs’ asynchronous decisionmaking regarding charging and ride-hailing in complex traffic environments. We adopt a hierarchical reinforcement learning (HRL) scheme, where each EV decides to get charged or pick up a passenger on the upper level and chooses a charging station or passenger on the lower level. We develop a learning algorithm for the HRL scheme to solve EFMP and present numerical results about the efficiency of our algorithm and policies EVs have learned in EFMP. Our codes are available at https://github.com/LovelyBuggies/SUMO-Gym, which provides an open-source environment for researchers to design traffic scenarios and test RL algorithms for EFMP.more » « less
-
The number of electric vehicles (EV) has increased significantly in the past decades due to its advantages including emission reduction and improved energy efficiency. However, the adoption of EV could lead to overloading the grid and degrading the power quality of the distribution system. It also demands an increase in the number of EV charging stations. To meet the charging needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging needs, and reallocating charging resources are in emerging needs. In this study, long short-term memory (LSTM) and autoregressive and moving average models (ARMA) models were applied to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was applied to evaluate the performance of the models. The LSTM models demonstrated a significant performance improvement compared to ARMA models. The results from this study lay a foundation to efficiently manage charge resources.more » « less
An official website of the United States government

