skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moral Machine or Tyranny of the Majority?
With artificial intelligence systems increasingly applied in consequential domains, researchers have begun to ask how AI systems ought to act in ethically charged situations where even humans lack consensus. In the Moral Machine project, researchers crowdsourced answers to Trolley Problems concerning autonomous vehicles. Subsequently, Noothigattu et al. (2018) proposed inferring linear functions that approximate each individual's preferences and aggregating these linear models by averaging parameters across the population. In this paper, we examine this averaging mechanism, focusing on fairness concerns and strategic effects. We investigate a simple setting where the population consists of two groups, the minority constitutes an α < 0.5 share of the population, and within-group preferences are homogeneous. Focusing on the fraction of contested cases where the minority group prevails, we make the following observations: (a) even when all parties report their preferences truthfully, the fraction of disputes where the minority prevails is less than proportionate in α; (b) the degree of sub-proportionality grows more severe as the level of disagreement between the groups increases; (c) when parties report preferences strategically, pure strategy equilibria do not always exist; and (d) whenever a pure strategy equilibrium exists, the majority group prevails 100% of the time. These findings raise concerns about stability and fairness of averaging as a mechanism for aggregating diverging voices. Finally, we discuss alternatives, including randomized dictatorship and median-based mechanisms.  more » « less
Award ID(s):
2040929
PAR ID:
10476021
Author(s) / Creator(s):
; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
5
ISSN:
2159-5399
Page Range / eLocation ID:
5974 to 5982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rated preference aggregation is conventionally performed by averaging ratings from multiple evaluators to create a consensus ordering of candidates from highest to lowest average rating. Ideally, the consensus is fair, meaning critical opportunities are not withheld from marginalized groups of candidates, even if group biases may be present in the to-be-combined ratings. Prior work operationalizing fairness in preference aggregation is limited to settings where evaluators provide rankings of candidates (e.g., Joe > Jack > Jill). Yet, in practice, many evaluators assign ratings such as Likert scales or categories (e.g., yes, no, maybe) to each candidate. Ratings convey different information than rankings leading to distinct fairness issues during their aggregation. The existing literature does not characterize these fairness concerns nor provide applicable bias-mitigation solutions. Unlike the ranked setting studied previously, two unique forms of bias arise in rating aggregation. First, biased rating stems from group disparities in to-be-aggregated evaluator ratings. Second, biased tie-breaking occurs because ties in average ratings must be resolved when aggregating ratings into a consensus ranking, and this tie-breaking act can unfairly advantage certain groups. To address this gap, we define the open fair rated preference aggregation problem and introduce the corresponding Fate methodology. Fate offers the first group fairness metric specifically for rated preference data. We propose two Fate algorithms. Fate-Break works in settings when ties need to be broken, explicitly fairness-enhancing such processes without lowering consensus utility. Fate-Rate mitigates disparities in how groups are rated, by using a Markov-chain approach to generate outcomes where groups are, in as much as possible, equally represented. Our experimental study illustrates the FATE methods provide the most bias-mitigation compared to adapting prior methods to fair tie-breaking and rating aggregation. 
    more » « less
  2. We study the group-fair obnoxious facility location problems from the mechanism design perspective where agents belong to different groups and have private location preferences on the undesirable locations of the facility. Our main goal is to design strategyproof mechanisms that elicit the true location preferences from the agents and determine a facility location that approximately optimizes several group-fair objectives. We first consider the maximum total and average group cost (group-fair) objectives. For these objectives, we propose deterministic mechanisms that achieve 3-approximation ratios and provide matching lower bounds. We then provide the characterization of 2-candidate strategyproof randomized mechanisms. Leveraging the characterization, we design randomized mechanisms with improved approximation ratios of 2 for both objectives. We also provide randomized lower bounds of 5/4 for both objectives. Moreover, we investigate intergroup and intragroup fairness (IIF) objectives, addressing fairness between groups and within each group. We present a mechanism that achieves a 4-approximation for the IIF objectives and provide tight lower bounds. 
    more » « less
  3. Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes. Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives. 
    more » « less
  4. Fairness in recommender systems is a complex concept, involving multiple definitions, different parties for whom fairness is sought, and various scopes over which fairness might be measured. Re- searchers seeking fairness-aware systems have derived a variety of solutions, usually highly tailored to specific choices along each of these dimensions, and typically aimed at tackling a single fairness concern, i.e., a single definition for a specific stakeholder group and measurement scope. However, in practical contexts, there are a multiplicity of fairness concerns within a given recommendation application and solutions limited to a single dimension are therefore less useful. We explore a general solution to recommender system fairness using social choice methods to integrate multiple hetero- geneous definitions. In this paper, we extend group-fairness results from prior research to provider-side individual fairness, demon- strating in multiple datasets that both individual and group fairness objectives can be integrated and optimized jointly. We identify both synergies and tensions among different objectives with individ- ual fairness correlated with group fairness for some groups and anti-correlated with others. 
    more » « less
  5. With the increasing prevalence of automatic decision-making systems, concerns regarding the fairness of these systems also arise. Without a universally agreed-upon definition of fairness, given an automated decision-making scenario, researchers often adopt a crowdsourced approach to solicit people’s preferences across multiple fairness definitions. However, it is often found that crowdsourced fairness preferences are highly context-dependent, making it intriguing to explore the driving factors behind these preferences. One plausible hypothesis is that people’s fairness preferences reflect their perceived risk levels for different decision-making mistakes, such that the fairness definition that equalizes across groups the type of mistakes that are perceived as most serious will be preferred. To test this conjecture, we conduct a human-subject study (𝑁 =213) to study people’s fairness perceptions in three societal contexts. In particular, these three societal contexts differ on the expected level of risk associated with different types of decision mistakes, and we elicit both people’s fairness preferences and risk perceptions for each context. Our results show that people can often distinguish between different levels of decision risks across different societal contexts. However, we find that people’s fairness preferences do not vary significantly across the three selected societal contexts, except for within a certain subgroup of people (e.g., people with a certain racial background). As such, we observe minimal evidence suggesting that people’s risk perceptions of decision mistakes correlate with their fairness preference. These results highlight that fairness preferences are highly subjective and nuanced, and they might be primarily affected by factors other than the perceived risks of decision mistakes. 
    more » « less