Abstract Lithium‐rich transition metal chalcogenides are witnessing a revival as candidates for Li‐ion cathode materials, spurred by the boost in their capacities from transcending conventional redox processes based on cationic states and tapping into additional chalcogenide states. A particularly striking case is Li2TiS3‐ySey, which features a d0metal. While the end members are expectedly inactive, substantial capacities are measured when both Se and S are present. Using X‐ray absorption spectroscopy, it is shown that the electronic structure of Li2TiS3‐ySeyis not a simple combination of the end members. The data confirm previous hypotheses that, in Li2TiS2.4Se0.6, this behavior is underpinned by concurrent and reversible redox of only S and Se, and identify key electronic states. Moreover, wavelet transforms of the extended X‐ray absorption fine structure provide direct evidence of the formation of short Se–Se units upon charging. The study uncovers the underpinnings of this intriguing reactivity and highlights the richness of redox chemistry in complex solids.
more »
« less
Structural and Chemical Evolution of Highly Fluorinated Li‐Rich Disordered Rocksalt Oxyfluorides as a Function of Temperature
Abstract Li‐rich disordered rocksalt (DRS) oxyfluorides have emerged as promising high‐energy cathode materials for lithium‐ion batteries. While a high level of fluorination in DRS materials offers performance advantages, it can only be achieved via mechanochemical synthesis, which poses challenges of reproducibility and scalability. The definition of relationships between fluorination and structural stability is required to devise alternative methods that overcome these challenges. In this study, the thermal evolution of three highly fluorinated phases, Li2TMO2F (TM = Mn, Co, and Ni), is investigated in an inert atmosphere. Diffraction and spectroscopic techniques are utilized to examine their electronic and chemical states up until conditions of decomposition. The analysis reveals that the materials phase‐separate above 400 °C, at most. It is also observed that heat‐treated DRS materials exhibit intricate changes in the local coordination of the metals, including their spin, and ordering compared to the pristine states. The changes upon annealing are accompanied by a modulation of the voltage profile, including reduced hysteresis, when used as electrodes. These results provide an in‐depth understanding of the fundamental crystal chemistry of DRS oxyfluorides in view of their promising role as the next generation of Li‐ion cathodes.
more »
« less
- Award ID(s):
- 2118020
- PAR ID:
- 10476043
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 10
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.more » « less
-
Abstract Nonaqueous sodium- and lithium-oxygen batteries are of interest because of their high theoretical specific energies relative to state-of-the-art Li-ion batteries. However, several challenges limit rechargeability, including instability of the carbon electrode and electrolyte with reactive oxygen species formed during cycling. This work investigates strategies to improve the cycling efficiency of the Na–O2system and minimize irreversible degradation of electrolyte and electrode materials. We show that charging cells with a constant current/constant voltage (CCCV) protocol is a promising technique made possible by the slight solubility of sodium superoxide in nonaqueous electrolytes. In addition, the type of carbon electrode has a significant impact on cell performance and efficacy of the cycling protocol. Graphitic carbon electrodes coupled with CCCV charging demonstrate higher reversibility, more efficient oxygen evolution, and less outgassing than conventional cells using a porous carbon paper electrode and only a constant current charge. Graphical abstractmore » « less
-
Abstract Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed.more » « less
-
Abstract Layered oxide cathode with a Li‐O‐vacancy configuration offers high capacity by leveraging additional oxygen redox reactions. However, it faces severe challenges of sluggish kinetics of oxygen redox reactions and lattice oxygen loss, resulting in slow Li+diffusion and rapid electrochemical degradation. Herein, Ti is introduced as electrochemical inactive element into Li‐O‐vacancy configuration to form Mn/vacancy/Ti arrangement within transition metal layers of layered oxide, achieving a marked increase in average output voltage at high current density compared with Ti‐free counterpart. Not only voltage hysteresis between charge and discharge processes can be significantly reduced, but rate capability can be heightened in Li4/7[□1/7Ti1/7Mn5/7]O2by means of retrained over‐potential and improved Li+diffusivity. Furthermore, theoretical calculations suggest that these improvements stem from Ti substitution, which elongates the Li─O bond and lowers the Li+migration energy barrier. Besides, in situ differential electrochemical mass spectrometry and soft X‐ray absorption spectroscopy reveal the modified Li‐O‐vacancy configuration enables reversible anionic and cationic redox behaviors during cycling. These findings provide a promising strategy for tailoring oxygen redox activity and accelerating Li+diffusion kinetics in layered cathode materials with oxygen redox chemistry.more » « less
An official website of the United States government
