skip to main content


Title: 3D hydrodynamics simulations of a 3  M⊙ core helium burning star
ABSTRACT

The inner structure of core helium burning (CHeB) stars remains uncertain due to the yet unknown nature of mixing at the boundary of their cores. Large convective cores beyond a bare Schwarzschild model are favoured both from theoretical arguments and from asteroseismological constraints. However, the exact nature of this extra mixing, and in particular the possible presence of semiconvective layers, is still debated. In this work, we approach this problem through a new avenue by performing the first full-sphere 3D hydrodynamics simulations of the interiors of CHeB stars. We use the ppmstar explicit gas dynamics code to simulate the inner 0.45$\, {\rm M}_{\odot }$ of a 3 M⊙ CHeB star. Simulations are performed using different Cartesian grid resolutions (7683, 11523, and 17283) and heating rates. We use two different initial states, one based on mesas's predictive mixing scheme (which significantly extends the core beyond the Schwarzschild boundary) and one based on the convective premixing approach (which exhibits a semiconvective interface). The general behaviour of the flow in the convective core and in the stable envelope (where internal gravity waves are observed) is consistent with our recent simulations of core convection in massive main-sequence stars, and so are the various luminosity scaling relations. The semiconvective layers are dominated by strong internal gravity waves that do not produce measurable species mixing, but overshooting motions from the convective core gradually homogenize the semiconvective interface. This process can possibly completely erase the semiconvective layers, which would imply that CHeB stars do not harbour a semiconvection zone.

 
more » « less
NSF-PAR ID:
10476297
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4847-4862
Size(s):
["p. 4847-4862"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the first 3D hydrodynamics simulations of the excitation and propagation of internal gravity waves (IGWs) in the radiative interiors of low-mass stars on the red giant branch (RGB). We use the ppmstar explicit gas dynamics code to simulate a portion of the convective envelope and all the radiative zone down to the hydrogen-burning shell of a $1.2\, {\rm M}_{\odot }$ upper RGB star. We perform simulations for different grid resolutions (7683, 15363, and 28803), a range of driving luminosities, and two different stratifications (corresponding to the bump luminosity and the tip of the RGB). Our RGB tip simulations can be directly performed at the nominal luminosity, circumventing the need for extrapolations to lower luminosities. A rich, continuous spectrum of IGWs is observed, with a significant amount of total power contained at high wavenumbers. By following the time evolution of a passive dye in the stable layers, we find that IGW mixing in our simulations is weaker than predicted by a simple analytical prescription based on shear mixing and not efficient enough to explain the missing RGB extra mixing. However, we may be underestimating the efficiency of IGW mixing given that our simulations include a limited portion of the convective envelope. Quadrupling its radial extent compared to our fiducial set-up increases convective velocities by up to a factor 2 and IGW velocities by up to a factor 4. We also report the formation of a $\sim 0.2\, H_P$ penetration zone and evidence that IGWs are excited by plumes that overshoot into the stable layers.

     
    more » « less
  2. Abstract

    Asteroseismology has been used extensively in recent years to study the interior structure and physical processes of main-sequence stars. We consider prospects for using pressure modes (p-modes) near the frequency of maximum oscillation power to probe the structure of the near-core layers of main-sequence stars with convective cores by constructing stellar model tracks. Within our mass range of interest, the inner turning point of p-modes as determined by the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation evolves in two distinct phases during the main sequence, implying a sudden loss of near-core sensitivity during the discontinuous transition between the two phases. However, we also employ non-JWKB asymptotic analysis to derive a contrasting set of expressions for the effects that these structural properties will have on the mode frequencies, which do not encode any such transition. We show analytically that a sufficiently near-core perturbation to the stellar structure results in nonoscillatory, degree-dependent perturbations to the star’s oscillation mode frequencies, contrasting with the case of an outer glitch. We also demonstrate numerically that these near-core acoustic glitches exhibit strong angular degree dependence, even at low degree, agreeing with the non-JWKB analysis, rather than the degree-independent oscillations that emerge from JWKB analyses. These properties have important implications for using p-modes to study near-core mixing processes for intermediate-mass stars on the main sequence, as well as for the interpretation of near-center acoustic glitches in other astrophysical configurations, such as red giants.

     
    more » « less
  3. ABSTRACT In this work, we investigate the impact of uncertainties due to convective boundary mixing (CBM), commonly called ‘overshoot’, namely the boundary location and the amount of mixing at the convective boundary, on stellar structure and evolution. For this we calculated two grids of stellar evolution models with the MESA code, each with the Ledoux and the Schwarzschild boundary criterion, and vary the amount of CBM. We calculate each grid with the initial masses of 15, 20, and $25\, \rm {M}_\odot$. We present the stellar structure of the models during the hydrogen and helium burning phases. In the latter, we examine the impact on the nucleosynthesis. We find a broadening of the main sequence with more CBM, which is more in agreement with observations. Furthermore, during the core hydrogen burning phase there is a convergence of the convective boundary location due to CBM. The uncertainties of the intermediate convective zone remove this convergence. The behaviour of this convective zone strongly affects the surface evolution of the model, i.e. how fast it evolves redwards. The amount of CBM impacts the size of the convective cores and the nucleosynthesis, e.g. the 12C to 16O ratio and the weak s-process. Lastly, we determine the uncertainty that the range of parameter values investigated introduces and we find differences of up to $70{{\ \rm per\ cent}}$ for the core masses and the total mass of the star. 
    more » « less
  4. Abstract

    Observations indicate that the convective cores of stars must ingest a substantial amount of material from the overlying radiative zone, but the extent of this mixing and the mechanism that causes it remain uncertain. Recently, Anders et al. developed a theory of convective penetration and calibrated it with 3D numerical hydrodynamics simulations. Here we employ that theory to predict the extent of convective boundary mixing (CBM) in early-type main-sequence stars. We find that convective penetration produces enough mixing to explain core masses inferred from asteroseismology and eclipsing binary studies, and matches observed trends in mass and age. While there are remaining uncertainties in the theory, this agreement suggests that most CBM in early-type main-sequence stars arises from convective penetration. Finally, we provide a fitting formula for the extent of core convective penetration for main-sequence stars in the mass range from 1.1–60M.

     
    more » « less
  5. ABSTRACT

    Supermassive stars are Population III stars with masses exceeding $10^4\, {\rm M}_{\odot }$ that could be the progenitors of the first supermassive black holes. Their interiors are in a regime where radiation pressure dominates the equation of state. In this work, we use the explicit gas dynamics code ppmstar to simulate the hydrogen-burning core of a $10^4\, {\rm M}_{\odot }$ supermassive main-sequence star. These are the first three-dimensional hydrodynamics simulations of core convection in supermassive stars. We perform a series of 10 simulations at different heating rates and on Cartesian grids with resolutions of 7683, 11523, and 17283. We examine different properties of the convective flow, including its large-scale morphology, its velocity spectrum, and its mixing properties. We conclude that the radiation pressure-dominated nature of the interior does not noticeably affect the behaviour of convection compared to the case of core convection in a massive main-sequence star where gas pressure dominates. Our simulations also offer support for the use of mixing-length theory in one-dimensional models of supermassive stars.

     
    more » « less