skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D hydrodynamic simulations of massive main-sequence stars – I. Dynamics and mixing of convection and internal gravity waves
ABSTRACT We performed 3D hydrodynamic simulations of the inner $$\approx 50{{\ \rm per\ cent}}$$ radial extent of a $$25\,\,\mathrm{\mathrm{M}_\odot }$$ star in the early phase of the main sequence and investigate core convection and internal gravity waves in the core-envelope boundary region. Simulations for different grid resolutions and driving luminosities establish scaling relations to constrain models of mixing for 1D applications. As in previous works, the turbulent mass entrainment rate extrapolated to nominal heating is unrealistically high ($$1.58\times 10^{-4}\,\,\mathrm{\mathrm{M}_\odot \, {\mathrm{yr}}^{-1}}$$), which is discussed in terms of the non-equilibrium response of the simulations to the initial stratification. We measure quantitatively the effect of mixing due to internal gravity waves excited by core convection interacting with the boundary in our simulations. The wave power spectral density as a function of frequency and wavelength agrees well with the GYRE eigenmode predictions based on the 1D spherically averaged radial profile. A diffusion coefficient profile that reproduces the spherically averaged abundance distribution evolution is determined for each simulation. Through a combination of eigenmode analysis and scaling relations it is shown that in the N2-peak region, mixing is due to internal gravity waves and follows the scaling relation DIGW-hydro ∝ L4/3 over a $$\gtrapprox 2\,\,\mathrm{\mathrm{dex}}$$ range of heating factors. Different extrapolations of the mixing efficiency down to nominal heating are discussed. If internal gravity wave mixing is due to thermally enhanced shear mixing, an upper limit is $$D_\mathrm{IGW}\lessapprox 2$$ to $$3\times 10^{4}\,\,\mathrm{cm^2\, s^{-1}}$$ at nominal heating in the N2-peak region above the convective core.  more » « less
Award ID(s):
1814181 2032010 1713200
PAR ID:
10556505
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Monthly Notices of the Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1601 to 1629
Subject(s) / Keyword(s):
convection, stellar hydrodynamics, convective boundary mixing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The inner structure of core helium burning (CHeB) stars remains uncertain due to the yet unknown nature of mixing at the boundary of their cores. Large convective cores beyond a bare Schwarzschild model are favoured both from theoretical arguments and from asteroseismological constraints. However, the exact nature of this extra mixing, and in particular the possible presence of semiconvective layers, is still debated. In this work, we approach this problem through a new avenue by performing the first full-sphere 3D hydrodynamics simulations of the interiors of CHeB stars. We use the ppmstar explicit gas dynamics code to simulate the inner 0.45$$\, {\rm M}_{\odot }$$ of a 3 M⊙ CHeB star. Simulations are performed using different Cartesian grid resolutions (7683, 11523, and 17283) and heating rates. We use two different initial states, one based on mesas's predictive mixing scheme (which significantly extends the core beyond the Schwarzschild boundary) and one based on the convective premixing approach (which exhibits a semiconvective interface). The general behaviour of the flow in the convective core and in the stable envelope (where internal gravity waves are observed) is consistent with our recent simulations of core convection in massive main-sequence stars, and so are the various luminosity scaling relations. The semiconvective layers are dominated by strong internal gravity waves that do not produce measurable species mixing, but overshooting motions from the convective core gradually homogenize the semiconvective interface. This process can possibly completely erase the semiconvective layers, which would imply that CHeB stars do not harbour a semiconvection zone. 
    more » « less
  2. Abstract We present 3D hydrodynamical simulations of core convection with a stably stratified envelope of a 25Mstar in the early phase of the main sequence. We use the explicit gas-dynamics codePPMstar, which tracks two fluids and includes radiation pressure and radiative diffusion. Multiple series of simulations with different luminosities and radiative thermal conductivities are presented. The entrainment rate at the convective boundary, internal gravity waves in and above the boundary region, and the approach to dynamical equilibrium shortly after a few convective turnovers are investigated. We perform very long simulations on 8963grids accelerated by luminosity boost factors of 1000, 3162 and 10,000. In these simulations, the growing penetrative convection reduces the initially unrealistically large entrainment. This reduction is enabled by a spatial separation that develops between the entropy gradient and the composition gradient. The convective boundary moves outward much more slowly at the end of these simulations. Finally, we present a 1D method to predict the extent and character of penetrative convection beyond the Schwarzschild boundary. The 1D model is based on a spherically averaged reduced entropy equation that takes the turbulent dissipation as input from the 3D hydrodynamic simulation and takes buoyancy and all other energy sources and sinks into account. This 1D method is intended to be ultimately deployed in 1D stellar evolution calculations and is based on the properties of penetrative convection in our simulations carried forward through the local thermal timescale. 
    more » « less
  3. ABSTRACT A few per cent of red giants are enriched in lithium with $$A(\mathrm{Li}) \gt 1.5$$. Their evolutionary status has remained uncertain because these Li-rich giants can be placed both on the red giant branch (RGB) near the bump luminosity and in the red clump (RC) region. However, thanks to asteroseismology, it has been found that most of them are actually RC stars. Starting at the bump luminosity, RGB progenitors of the RC stars experience extra mixing in the radiative zone separating the H-burning shell from the convective envelope followed by a series of convective He-shell flashes at the RGB tip, known as the He-core flash. The He-core flash was proposed to cause fast extra mixing in the stars at the RGB tip that is needed for the Cameron–Fowler mechanism to produce Li. We propose that the RGB stars are getting enriched in Li by the RGB extra mixing that is getting enhanced and begins to produce Li, instead of destroying it, when the stars are approaching the RGB tip. After a discussion of several mechanisms of the RGB extra mixing, including the joint operation of rotation-driven meridional circulation and turbulent diffusion, the azimuthal magnetorotational instability (AMRI), thermohaline convection, buoyancy of magnetic flux tubes, and internal gravity waves, and based on results of (magneto-) hydrodynamics simulations and asteroseismology observations, we are inclined to conclude that it is the mechanism of the AMRI or magnetically enhanced thermohaline convection, that is most likely to support our hypothesis. 
    more » « less
  4. ABSTRACT Although stellar radii from asteroseismic scaling relations agree at the per cent level with independent estimates for main sequence and most first-ascent red giant branch (RGB) stars, the scaling relations over-predict radii at the tens of per cent level for the most luminous stars ($$R \gtrsim 30 \, \mathrm{R}_{\odot }$$). These evolved stars have significantly superadiabatic envelopes, and the extent of these regions increase with increasing radius. However, adiabaticity is assumed in the theoretical derivation of the scaling relations as well as in corrections to the large frequency separation. Here, we show that a part of the scaling relation radius inflation may arise from this assumption of adiabaticity. With a new reduction of Kepler asteroseismic data, we find that scaling relation radii and Gaia radii agree to within at least 2 per cent for stars with $$R \lesssim 30\, \mathrm{R}_{\odot }$$, when treated under the adiabatic assumption. The accuracy of scaling relation radii for stars with $$50\, \mathrm{R}_{\odot }\lesssim R \lesssim 100\, \mathrm{R}_{\odot }$$, however, is not better than $$10~{{\ \rm per \, cent}}-15~{{\ \rm per \, cent}}$$ using adiabatic large frequency separation corrections. We find that up to one third of this disagreement for stars with $$R \approx 100\, \mathrm{R}_{\odot }$$ could be caused by the adiabatic assumption, and that this adiabatic error increases with radius to reach 10 per cent at the tip of the RGB. We demonstrate that, unlike the solar case, the superadiabatic gradient remains large very deep in luminous stars. A large fraction of the acoustic cavity is also in the optically thin atmosphere. The observed discrepancies may therefore reflect the simplified treatment of convection and atmospheres. 
    more » « less
  5. ABSTRACT We present the first 3D hydrodynamics simulations of the excitation and propagation of internal gravity waves (IGWs) in the radiative interiors of low-mass stars on the red giant branch (RGB). We use the ppmstar explicit gas dynamics code to simulate a portion of the convective envelope and all the radiative zone down to the hydrogen-burning shell of a $$1.2\, {\rm M}_{\odot }$$ upper RGB star. We perform simulations for different grid resolutions (7683, 15363, and 28803), a range of driving luminosities, and two different stratifications (corresponding to the bump luminosity and the tip of the RGB). Our RGB tip simulations can be directly performed at the nominal luminosity, circumventing the need for extrapolations to lower luminosities. A rich, continuous spectrum of IGWs is observed, with a significant amount of total power contained at high wavenumbers. By following the time evolution of a passive dye in the stable layers, we find that IGW mixing in our simulations is weaker than predicted by a simple analytical prescription based on shear mixing and not efficient enough to explain the missing RGB extra mixing. However, we may be underestimating the efficiency of IGW mixing given that our simulations include a limited portion of the convective envelope. Quadrupling its radial extent compared to our fiducial set-up increases convective velocities by up to a factor 2 and IGW velocities by up to a factor 4. We also report the formation of a $$\sim 0.2\, H_P$$ penetration zone and evidence that IGWs are excited by plumes that overshoot into the stable layers. 
    more » « less