Abstract The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co‐locate eddies, identified in the Meta3.2DT satellite altimeter‐based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice‐free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.01 Pg C (7 ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 Pg C (2 ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.
more »
« less
Skillful Multi‐Month Predictions of Ecosystem Stressors in the Surface and Subsurface Ocean
Abstract Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long‐term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystem stressors on monthly, seasonal, and multi‐month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation‐based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making.
more »
« less
- PAR ID:
- 10476315
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 11
- Issue:
- 11
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The California Current System (CCS) sustains economically valuable fisheries and is particularly vulnerable to ocean acidification, due to its natural upwelling of carbon-enriched waters that generate corrosive conditions for local ecosystems. Here we use a novel suite of retrospective, initialized ensemble forecasts with an Earth system model (ESM) to predict the evolution of surface pH anomalies in the CCS. We show that the forecast system skillfully predicts observed surface pH variations a year in advance over a naive forecasting method, with the potential for skillful prediction up to five years in advance. Skillful predictions of surface pH are mainly derived from the initialization of dissolved inorganic carbon anomalies that are subsequently transported into the CCS. Our results demonstrate the potential for ESMs to provide skillful predictions of ocean acidification on large scales in the CCS. Initialized ESMs could also provide boundary conditions to improve high-resolution regional forecasting systems.more » « less
-
Abstract. Interannual variations in air–sea fluxes of carbon dioxide (CO2) impactthe global carbon cycle and climate system, and previous studies suggest thatthese variations may be predictable in the near term (from a year to a decadein advance). Here, we quantify and understand the sources of near-termpredictability and predictive skill in air–sea CO2 flux on global andregional scales by analyzing output from a novel set of retrospective decadalforecasts of an Earth system model. These forecasts exhibit the potential topredict year-to-year variations in the globally integrated air–sea CO2flux several years in advance, as indicated by the high correlation of theforecasts with a model reconstruction of past CO2 flux evolution. Thispotential predictability exceeds that obtained solely from foreknowledge ofvariations in external forcing or a simple persistence forecast, with thelongest-lasting forecast enhancement in the subantarctic Southern Ocean andthe northern North Atlantic. Potential predictability in CO2 fluxvariations is largely driven by predictability in the surface ocean partialpressure of CO2, which itself is a function of predictability in surfaceocean dissolved inorganic carbon and alkalinity. The potentialpredictability, however, is not realized as predictive skill, as indicated bythe moderate to low correlation of the forecasts with anobservationally based CO2 flux product. Nevertheless, our results suggestthat year-to-year variations in ocean carbon uptake have the potential to bepredicted well in advance and establish a precedent for forecasting air–seaCO2 flux in the near future.more » « less
-
Abstract Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability.more » « less
-
Interannual variations in marine net primary production (NPP) contribute to the variability of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a global overview of near‐term (1 to 10 years) potential predictability of marine NPP using a novel set of initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters to the tropics, showing a substantial improvement over a simple persistence forecast. However, some regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how bottom‐up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability. Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher potential predictability than high‐latitude regions where NPP is controlled by light and/or temperature (e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems. With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large Marine Ecosystems over a persistence forecast and may aid to manage living marine resources.more » « less
An official website of the United States government
