skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delocalization and Universality of the Fractional Quantum Hall Plateau-to-Plateau Transitions
Award ID(s):
1906253 2104771
PAR ID:
10476557
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
130
Issue:
22
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During International Ocean Discovery Program Expedition 392, three sites were drilled on the Agulhas Plateau and one site was drilled in the Transkei Basin in the Southwest Indian Ocean. This region was positioned at paleolatitudes of ~53°–61°S during the Late Cretaceous (van Hinsbergen et al., 2015) (100–66 Ma) and within the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and sedimentary sequences from the Agulhas Plateau sites and a thick sedimentary sequence in the Transkei Basin provides a wealth of new data to (1) determine the nature, origin, and bathymetric evolution of the Agulhas Plateau; (2) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed; (3) document long- and short-term paleoceanographic variability through the Late Cretaceous and Paleogene; and (4) investigate geochemical interactions between igneous rocks, sediments, and pore waters through the life cycle of a large igneous province (LIP). Importantly, postcruise analysis of Expedition 392 drill cores will allow testing of competing hypotheses concerning Agulhas Plateau LIP formation and the role of deep ocean circulation changes through southern gateways in influencing Late Cretaceous–early Paleogene climate evolution. 
    more » « less
  2. null (Ed.)
  3. A<sc>bstract</sc> As has been known since the 90s, there is an integrable structure underlying two-dimensional gravity theories. Recently, two-dimensional gravity theories have regained an enormous amount of attention, but now in relation with quantum chaos — superficially nothing like integrability. In this paper, we return to the roots and exploit the integrable structure underlying dilaton gravity theories to study a late time, largeeSBHdouble scaled limit of the spectral form factor. In this limit, a novel cancellation due to the integrable structure ensures that at each genusgthe spectral form factor grows likeT2g+1, and that the sum over genera converges, realising a perturbative approach to the late-time plateau. Along the way, we clarify various aspects of this integrable structure. In particular, we explain the central role played by ribbon graphs, we discuss intersection theory, and we explain what the relations with dilaton gravity and matrix models are from a more modern holographic perspective. 
    more » « less