skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pacific Northwest conifer forest stand carrying capacity under future climate scenarios
Abstract Maximum stand density index (SDIMAX) represents the carrying capacity of a forest stand based on the relationship between the number of trees and their size. Plot‐level inventory data provided through a collaborative network of federal, state, and private forest management groups were utilized to develop SDIMAXmodels for important Pacific Northwest conifers of western Washington and Oregon, USA. The influence of site‐specific climatic and environmental variables was explored within an ensemble learning model. Future climate projections based on global circulation models under different representative CO2concentration pathways (RCP 4.5 and RCP 8.5) and timeframes (2050s and 2080s) were utilized in a space‐for‐time substitution to understand potential shifts in modeled SDIMAX. A majority of the region showed decreases in carrying capacity under future climate conditions. Modeled mean SDIMAXdecreased 5.4% and 11.4% for Douglas‐fir (Pseudotsuga menziesii(Mirb.) Franco) dominated forests and decreased 6.6% and 8.9% for western hemlock (Tsuga heterophylla(Raf.) Sarg.) and Pacific silver fir (Abies amabilis), dominated forests under the RCP 4.5 in the 2050s and RCP 8.5 in the 2080s, respectively. Projected future conditions often fall outside the range of any contemporary climate profile, resulting in what may be referred to as extramural conditions. Within the study region, 45% and 46% of climate variables included in the final model were extramural for the Douglas‐fir and hemlock models, respectively, under RCP 8.5 in the 2080s. Although extrapolating beyond the range of input data is not appropriate and many unknowns remain regarding future climate projections, these results allow for general interpretations of the direction and magnitude of potential shifts in forest carrying capacity.  more » « less
Award ID(s):
1916699
PAR ID:
10476663
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Natural Resource Modeling
Volume:
36
Issue:
4
ISSN:
0890-8575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Maximum stand density index (SDI MAX ) models were developed for important Pacific Northwest conifers of western Oregon and Washington, USA, based on site and species influences and interactions. Inventory and monitoring data from numerous federal, state, and private forest management groups were obtained throughout the region to ensure a wide coverage of site characteristics. These observations include information on tree size, number, and species composition. The effects and influence on the self-thinning frontier of plot-specific factors such as climate, topography, soils, and geology, as well as species composition, were evaluated based on geographic location using a multistep approach to analysis involving linear quantile mixed models, random forest, and stochastic frontier functions. The self-thinning slope of forest stands dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) was found to be –1.517 and that of stands dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.) was found to be –1.461, leading to regionwide modelled SDI MAX values at the 95th percentile of 1728 and 1952 trees per hectare, respectively. The regional model of site-specific SDI MAX will support forest managers in decision-making regarding density management and species selection to more efficiently utilize site resources toward healthy, productive forests. 
    more » « less
  2. Abstract Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas‐fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas‐fir forest stands seral to mountain hemlock or silver fir, but fire frequency was much shorter than predicted by theory in other forest types. MFRIs within Douglas‐fir stands seral to western hemlock or grand fir ranged from 19 to 45 years, and MFRIs in stands seral to Douglas‐fir ranged from 6 to 11 years. There was little synchrony in fire occurrence or tree establishment across 16 sites separated by 4 km. The lack of synchrony in fire suggests that large, wind‐driven fire events that are often considered to be characteristic of coast Douglas‐fir forests were not an important driver of succession in our study area during the last ~400–500 years. Climate was more arid than normal during fire years in most forest types, but historical fire in stands seral to Douglas‐fir was strongly associated with antecedent moisture and less strongly associated with drought. We interpret the extraordinary tempo of fire we observed in stands seral to Douglas‐fir and the unique climate pattern associated with fire in these stands to be indicative of Indigenous fire stewardship. This study provides evidence of far more frequent historical fire in coast Douglas‐fir forests than assumed by managers or scientists—including some of the most frequent fire return intervals documented in the Pacific Northwest. We recommend additional research across the western Cascades to create a comprehensive account of historical fire in highly productive forests with significant cultural, economic, and ecological importance. 
    more » « less
  3. Abstract Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5. 
    more » « less
  4. Abstract Crop phenology regulates seasonal carbon and water fluxes between croplands and the atmosphere and provides essential information for monitoring and predicting crop growth dynamics and productivity. However, under rapid climate change and more frequent extreme events, future changes in crop phenological shifts have not been well investigated and fully considered in earth system modeling and regional climate assessments. Here, we propose an innovative approach combining remote sensing imagery and machine learning (ML) with climate and survey data to predict future crop phenological shifts across the US corn and soybean systems. Specifically, our projected findings demonstrate distinct acceleration patterns—under the RCP 4.5/RCP 8.5 scenarios, corn planting, silking, maturity, and harvesting stages would significantly advance by 0.94/1.66, 1.13/2.45, 0.89/2.68, and 1.04/2.16 days/decade during 2021–2099, respectively. Soybeans exhibit more muted responses with phenological stages showing relatively smaller negative trends (0.59, 1.08, 0.07, and 0.64 days/decade under the RCP 4.5 vs. 1.24, 1.53, 0.92, and 1.04 days/decade under the RCP 8.5). These spatially explicit projections illustrate how crop phenology would respond to future climate change, highlighting widespread and progressively earlier phenological timing. Based on these findings, we call for a specific effort to quantify the cascading effects of future phenology shifts on crop yield and carbon, water, and energy balances and, accordingly, craft targeted adaptive strategies. 
    more » « less
  5. Abstract Douglas‐fir [Pseudotsuga menziesii(Mirb.) Franco] is the predominant forest plantation species in the Pacific Northwest (PNW), with site productivity and fertilizer response influenced by climate and soil variations. This study investigates the utility of in situ 12‐week supply measurements of nitrogen (N), calcium (Ca), and phosphorus (P) to ion‐exchange resins (specifically Plant Root Simulator [PRS] probes) to estimate carbon (C):N ratios, soil nutrient contents (0–1 m), foliar nutrient concentrations, Douglas‐fir productivity (site index and basal area mean annual increment), and fertilizer volume response. PRS nutrient supply rates were correlated with N, Ca, and P soil nutrient contents (0–1 m), C:N ratios, and foliar nutrient concentrations. Low PRS NO3supply rates (<25 mg N·m−2·burial period−1) were correlated with lower Douglas‐fir productivity and greater fertilizer volume response. PRS NO3supply rates performed as well as total soil N contents and foliar N concentrations at estimating volume growth response to fertilizer. Twelve weeks after fertilization, PRS NO3, NH4, and Ca supply rates were significantly elevated compared to the unfertilized treatment. This research found that PRS probes were an effective in situ tool and are recommended for understanding N, Ca, and P nutrient availabilities, site productivity, and fertilizer response in Douglas‐fir plantations and for developing fertilizer prescriptions. 
    more » « less