skip to main content


This content will become publicly available on November 1, 2024

Title: Pacific Northwest conifer forest stand carrying capacity under future climate scenarios
Abstract

Maximum stand density index (SDIMAX) represents the carrying capacity of a forest stand based on the relationship between the number of trees and their size. Plot‐level inventory data provided through a collaborative network of federal, state, and private forest management groups were utilized to develop SDIMAXmodels for important Pacific Northwest conifers of western Washington and Oregon, USA. The influence of site‐specific climatic and environmental variables was explored within an ensemble learning model. Future climate projections based on global circulation models under different representative CO2concentration pathways (RCP 4.5 and RCP 8.5) and timeframes (2050s and 2080s) were utilized in a space‐for‐time substitution to understand potential shifts in modeled SDIMAX. A majority of the region showed decreases in carrying capacity under future climate conditions. Modeled mean SDIMAXdecreased 5.4% and 11.4% for Douglas‐fir (Pseudotsuga menziesii(Mirb.) Franco) dominated forests and decreased 6.6% and 8.9% for western hemlock (Tsuga heterophylla(Raf.) Sarg.) and Pacific silver fir (Abies amabilis), dominated forests under the RCP 4.5 in the 2050s and RCP 8.5 in the 2080s, respectively. Projected future conditions often fall outside the range of any contemporary climate profile, resulting in what may be referred to as extramural conditions. Within the study region, 45% and 46% of climate variables included in the final model were extramural for the Douglas‐fir and hemlock models, respectively, under RCP 8.5 in the 2080s. Although extrapolating beyond the range of input data is not appropriate and many unknowns remain regarding future climate projections, these results allow for general interpretations of the direction and magnitude of potential shifts in forest carrying capacity.

 
more » « less
Award ID(s):
1916699
NSF-PAR ID:
10476663
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Natural Resource Modeling
Volume:
36
Issue:
4
ISSN:
0890-8575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Maximum stand density index (SDI MAX ) models were developed for important Pacific Northwest conifers of western Oregon and Washington, USA, based on site and species influences and interactions. Inventory and monitoring data from numerous federal, state, and private forest management groups were obtained throughout the region to ensure a wide coverage of site characteristics. These observations include information on tree size, number, and species composition. The effects and influence on the self-thinning frontier of plot-specific factors such as climate, topography, soils, and geology, as well as species composition, were evaluated based on geographic location using a multistep approach to analysis involving linear quantile mixed models, random forest, and stochastic frontier functions. The self-thinning slope of forest stands dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) was found to be –1.517 and that of stands dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.) was found to be –1.461, leading to regionwide modelled SDI MAX values at the 95th percentile of 1728 and 1952 trees per hectare, respectively. The regional model of site-specific SDI MAX will support forest managers in decision-making regarding density management and species selection to more efficiently utilize site resources toward healthy, productive forests. 
    more » « less
  2. Abstract

    Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas‐fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas‐fir forest stands seral to mountain hemlock or silver fir, but fire frequency was much shorter than predicted by theory in other forest types. MFRIs within Douglas‐fir stands seral to western hemlock or grand fir ranged from 19 to 45 years, and MFRIs in stands seral to Douglas‐fir ranged from 6 to 11 years. There was little synchrony in fire occurrence or tree establishment across 16 sites separated by 4 km. The lack of synchrony in fire suggests that large, wind‐driven fire events that are often considered to be characteristic of coast Douglas‐fir forests were not an important driver of succession in our study area during the last ~400–500 years. Climate was more arid than normal during fire years in most forest types, but historical fire in stands seral to Douglas‐fir was strongly associated with antecedent moisture and less strongly associated with drought. We interpret the extraordinary tempo of fire we observed in stands seral to Douglas‐fir and the unique climate pattern associated with fire in these stands to be indicative of Indigenous fire stewardship. This study provides evidence of far more frequent historical fire in coast Douglas‐fir forests than assumed by managers or scientists—including some of the most frequent fire return intervals documented in the Pacific Northwest. We recommend additional research across the western Cascades to create a comprehensive account of historical fire in highly productive forests with significant cultural, economic, and ecological importance.

     
    more » « less
  3. The Gulf Coast watersheds in the United States contain some of the highest levels of biodiversity of all freshwater systems in North America. Developing environmental management policies to protect and preserve these ecosystems makes the study of the impacts of projected climate change on the future hydrologic cycle crucial. We used the Soil and Water Assessment Tool (SWAT) to estimate the potential hydrologic changes for the mid‐21st century (2050s) and the late 21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds in the Gulf Coast region of the United States. These estimates are based on downscaled future climate projections from 20 global circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). SWAT models were calibrated and validated using the multi‐algorithm, genetically adaptive multi‐objective (AMALGAM) technique in a high‐performance computing (HPC) cluster. For the Gulf Coast watersheds, the climate is projected to be warmer and wetter. Projected changes in climatic variables are likely to bring large changes in both annual and seasonal hydrologic processes within these watersheds. We found substantial decreases in mean annual streamflow under RCP8.5 during the 2080s, with up to a 13.0% decrease projected for the Suwannee River watershed compared to the present day. Summer streamflow is projected to be substantially lower during the 2080s, with up to a 25.1% decrease projected for the Suwannee River watershed, during a time of high demand of water resources for agricultural, industrial, and ecosystem services. These hydrologic projections are expected to help in making better‐informed decisions for future water resources and ecosystem management in the Gulf Coast region.

     
    more » « less
  4. Abstract

    Increased wildfire activity combined with warm and dry post-fire conditions may undermine the mechanisms maintaining forest resilience to wildfires, potentially causing ecosystem transitions, or fire-catalyzed vegetation shifts. Stand-replacing fire is especially likely to catalyze vegetation shifts expected from climate change, by killing mature trees that are less sensitive to climate than juveniles. To understand the vulnerability of forests to fire-catalyzed vegetation shifts it is critical to identify both where fires will burn with stand-replacing severity and where climate conditions limit seedling recruitment. We used an extensive dendrochronological dataset to model the influence of seasonal climate on post-fire recruitment probability for ponderosa pine and Douglas-fir. We applied this model to project annual recruitment probability in the US intermountain west under contemporary and future climate conditions, which we compared to modeled probability of stand-replacing fire. We categorized areas as ‘vulnerable to fire-catalyzed vegetation shifts,’ if they were likely to burn at stand-replacing severity, if a fire were to occur, and had post-fire climate conditions unsuitable for tree recruitment. Climate suitability for recruitment declined over time in all ecoregions: 21% and 15% of the range of ponderosa pine and Douglas-fir, respectively, had climate conditions unsuitable for recruitment in the 1980s, whereas these values increased to 61% (ponderosa pine) and 34% (Douglas-fir) for the future climate scenario. Less area was vulnerable to fire-catalyzed vegetation shifts, but these values also increased over time, from 6% and 4% of the range of ponderosa pine and Douglas-fir in the 1980s, to 16% (ponderosa pine) and 10% (Douglas-fir) under the future climate scenario. Southern ecoregions had considerably higher vulnerability to fire-catalyzed vegetation shifts than northern ecoregions. Overall, our results suggest that the combination of climate warming and an increase in wildfire activity may substantially impact species distributions through fire-catalyzed vegetation shifts.

     
    more » « less
  5. Abstract

    Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.

     
    more » « less