skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: State Space Collapse in Resource Allocation for Demand Dispatch and its Implications for Distributed Control Design
Demand dispatch is the science of extracting virtual energy storage through the automatic control of deferrable loads to provide balancing or regulation services to the grid, while maintaining consumer-end quality of service.The control of a large collection of heterogeneous loads is in part a resource allocation problem, since different classes of loads are more valuable for different services. The goal of this paper is to unveil the structure of the optimal solution to the resource allocation problem, and investigate short-term market implications. It is found that the marginal cost for each load class evolves in a two-dimensional subspace: spanned by a co-state process and its derivative. The resource allocation problem is recast to construct a dynamic competitive equilibrium model, in which the consumer utility is the negative of the cost of deviation from ideal QoS. It is found that a competitive equilibrium exists with the equilibrium price equal to the negative of an optimal co-state process. Moreover, the equilibrium price is different than what would be obtained based on the standard assumption that the consumer's utility is a function of power consumption.  more » « less
Award ID(s):
1935389
PAR ID:
10477039
Author(s) / Creator(s):
; ; ;
Editor(s):
Alessandro Astolfi
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have all heard that there is growing need to secure resources to obtain supply-demand balance in a power grid facing increasing volatility from renewable sources of energy. There are mandates for utility scale battery systems in regions all over the world, and there is a growing science of “demand dispatch” to obtain virtual energy storage from flexible electric loads such as water heaters, air conditioning, and pumps for irrigation. The question addressed in this tutorial is how to manage a large number of assets for balancing the grid. The focus is on variants of the economic dispatch problem, which may be regarded as the “feed-forward” component in an overall control architecture. 1) The resource allocation problem is identical to a finite horizon optimal control problem with degenerate cost—so called “cheap control”. This implies a form of state space collapse, whose form is identified: the marginal cost for each load class evolves in a two-dimensional subspace, spanned by a scalar co-state process and its derivative. 2) The implication to distributed control is remarkable. Once the co-state process is synthesized, this common signal may be broadcast to each asset for optimal control. However, the optimal solution is extremely fragile, in a sense made clear through results from numerical studies. 3) Several remedies are proposed to address fragility. One is described through “robust training” in a particular Q-learning architecture (one approach to reinforcement learning). In numerical studies it is found that specialized training leads to more robust control solutions. 
    more » « less
  2. Abstract In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models. 
    more » « less
  3. Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery. 
    more » « less
  4. There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains. 
    more » « less
  5. Shared/buy-in computing systems offer users the option to select between buy-in and shared services. In such systems, idle buy-in resources are made available to other users for sharing. With strategic users, resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal social cost of the game in closed form, by casting it as a convex optimization problem and establishing related properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of the system, we propose and analyze two subsidy policies, which are shown to converge using best-response dynamics. 
    more » « less