skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group
Award ID(s):
1754596
PAR ID:
10477202
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Vertebrate Paleontologu
Date Published:
Journal Name:
Journal of Vertebrate Paleontology
Volume:
42
Issue:
3
ISSN:
0272-4634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Snakes represent one-eighth of terrestrial vertebrate diversity, encompassing various lifestyles, ecologies, and morphologies. However, the ecological origins and early evolution of snakes are controversial topics in biology. To address the paucity of well-preserved fossils and the caveats of osteological traits for reconstructing snake evolution, we applied a different ecomorphological hypothesis based on high-definition brain reconstructions of extant Squamata. Our predictive models revealed a burrowing lifestyle with opportunistic behavior at the origin of crown snakes, reflecting a complex ancestral mosaic brain pattern. These findings emphasize the importance of quantitatively tracking the phenotypic diversification of soft tissues—including the accurate definition of intact brain morphological traits such as the cerebellum—in understanding snake evolution and vertebrate paleobiology. Furthermore, our study highlights the power of combining extant and extinct species, soft tissue reconstructions, and osteological traits in tracing the deep evolution of not only snakes but also other groups where fossil data are scarce. 
    more » « less
  2. Abstract Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome ofCycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads andGinkgoform a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. TheCycasgenome contains four homologues of thefitDgene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome ofC. panzhihuaensiscontains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported inGinkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads andGinkgo. TheC. panzhihuaensisgenome provides an important new resource of broad utility for biologists. 
    more » « less
  3. In this meta-analysis of 54 longitudinal studies with over 58,000 students in kindergarten through 12th grade, we examined the predictive nature of early numeracy measured at or before the first year of formal schooling in relation to later mathematics. Results showed that early numeracy significantly predicted mathematics measured after 6 months or later, r = .49, 95% confidence interval [0.47, 0.52]. After controlling for all moderators in a model, results indicated that (a) different early numeracy including numbering, relations, and arithmetic operations did not differ much in their predictions of different later mathematics; (b) early numeracy as a whole was more predictive of later advanced mathematics skills (word problems) than of later foundational mathematics skills (calculations and fact fluency); (c) early numeracy’s prediction of later mathematics was stronger with longer prediction intervals; and (d) the earlier early numeracy was assessed, the stronger its prediction of later mathematics. Together, these findings suggest that early numeracy may be a unitary construct. Early numeracy does not merely serve as a steppingstone with temporary effects on foundational mathematics; instead, it likely triggers a snowballing effect, cumulatively influencing mathematics development over time. 
    more » « less