We report the isotropic plasma atomic layer etching (ALE) of aluminum nitride using sequential exposures of SF6 plasma and trimethylaluminum [Al(CH3)3]. ALE was observed at temperatures greater than 200 °C, with a maximum etch rate of 1.9 Å/cycle observed at 300 °C as measured using ex situ ellipsometry. After ALE, the etched surface was found to contain a lower concentration of oxygen compared to the original surface and exhibited a ∼35% decrease in surface roughness. These findings have relevance for applications of AlN in nonlinear photonics and wide bandgap semiconductor devices.
more »
« less
Isotropic plasma-thermal atomic layer etching of superconducting titanium nitride films using sequential exposures of molecular oxygen and SF6/H2 plasma
Microwave loss in superconducting TiN films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications, or the etch rate lacks the desired control. Furthermore, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6/H2 plasma. For certain ratios of SF6:H2 flow rates, we observe selective etching of TiO2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 Å/cycle at 150°C to 3.2 Å/cycle at 350°C using ex situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits.
more »
« less
- Award ID(s):
- 2234390
- PAR ID:
- 10477281
- Publisher / Repository:
- AVS
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 41
- Issue:
- 6
- ISSN:
- 0734-2101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium niobate (LiNbO3, LN) is a ferroelectric crystal of interest for integrated photonics owing to its large second-order optical nonlinearity and the ability to impart periodic poling via an external electric field. However, on-chip device performance based on thin-film lithium niobate (TFLN) is presently limited by propagation losses arising from surface roughness and corrugations. Atomic layer etching (ALE) could potentially smooth these features and thereby increase photonic performance, but no ALE process has been reported for LN. Here, we report an isotropic ALE process for x-cut MgO-doped LN using sequential exposures of H2 and SF6/Ar plasmas. We observe an etch rate of 1.59±0.02 nm/cycle with a synergy of 96.9%. We also demonstrate that ALE can be achieved with SF6/O2 or Cl2/BCl3 plasma exposures in place of the SF6/Ar plasma step with synergies of 99.5% and 91.5%, respectively. The process is found to decrease the sidewall surface roughness of TFLN waveguides etched by physical Ar+ milling by 30% without additional wet processing. Our ALE process could be used to smooth sidewall surfaces of TFLN waveguides as a postprocessing treatment, thereby increasing the performance of TFLN nanophotonic devices and enabling new integrated photonic device capabilities.more » « less
-
This work demonstrates an in situ etching technique for β-Ga2O3 using solid-source metallic gallium (Ga) in a low-pressure chemical vapor deposition (LPCVD) system, enabling clean, anisotropic, plasma damage-free etching. Etching behavior was systematically studied on (2¯01) β-Ga2O3 films and patterned (010) β-Ga2O3 substrates as a function of temperature (1000–1100 °C), Ar carrier gas flow (80–400 sccm) and Ga source-to-substrate distance (1–5 cm). The process exhibits vapor transport- and surface-reaction-limited behavior, with etch rates reaching a maximum of ∼2.25 µm/h on (010) substrates at 1050 °C and 2 cm spacing. Etch rates decrease sharply with increasing source-to-substrate distance due to reduced Ga vapor availability, while elevated temperatures enhance surface reaction kinetics through increased Ga reactivity and suboxide formation, leading to enhanced etch rates. In-plane anisotropy studies using radial trench patterns reveal that the (100) orientation produces the most stable etch front, characterized by smooth, vertical sidewalls and minimal lateral etching, consistent with its lowest surface free energy. In contrast, orientations such as (101), which possess higher surface energy, exhibit pronounced lateral etching and micro-faceting. As the trench orientation progressively deviates from (100), lateral etching increases. Facet evolution is observed between (100) and (1¯02), where stepped sidewalls composed of alternating (100) and (1¯02) segments progressively transition into a single inclined facet, which stabilizes along (100) or (1¯02) depending on the trench orientation. The (100)-aligned fins exhibit minimal bottom curvature, while (201)-aligned structures display increased under-etching and trench rounding. Collectively, these findings establish LPCVD-based in situ etching as a scalable, damage-free, and orientation-selective technique for fabricating high-aspect-ratio β-Ga2O3 3D structures in next-generation power devices.more » « less
-
A two-dimensional, cellular automata model for atomic layer etching (ALE) is presented and used to predict the etch rate and the evolution of the roughness of various surfaces as a function of the efficiencies or probabilities of the adsorption and removal steps in the ALE process. The atoms of the material to be etched are initially placed in a two-dimensional array several layers thick. The etch follows the two step process of ALE. First, the initial reaction step (e.g., Cl reacting with Si) is assumed to occur at 100% efficiency activating the exposed, surface atoms; that is, all exposed atoms react with the etching gas. The second reaction step (e.g., Ar ion bombardment or sputtering) occurs with efficiencies that are assumed to vary depending on the exposure of the surface atoms relative to their neighbors and on the strength of bombardment. For sufficiently high bombardment or sputtering, atoms below the activated surface atoms can also be removed, which gives etch rates greater than one layer per ALE cycle. The bounds on the efficiencies of the second removal step are extracted from experimental measurements and fully detailed molecular dynamics simulations from the literature. A trade-off is observed between etch rate and surface roughness as the Ar ion bombardment is increased.more » « less
-
A novel process for the electrochemical atomic layer etching (e-ALE) of ruthenium (Ru) is described. In this process, the surface Ru is electrochemically oxidized to form a monolayer of ruthenium (III) hydroxide—Ru(OH)3. The Ru(OH)3monolayer is then selectively etched in an electrolyte containing chloride (Cl–) species. This etching process is selective towards Ru(OH)3and does not attack the underlying Ru metal. Adsorbed Cl–on the Ru electrode is then cathodically desorbed before the sequence of Ru oxidation and Ru(OH)3etching is repeated. This e-ALE sequence is shown to etch Ru at approximately 0.5 monolayer per cycle while practically avoiding any surface roughness amplification. The proposed Ru e-ALE process uses a single electrolyte which eliminates the need for electrode transfer or electrolyte switching between process steps. In this report, we employ electrochemical, microscopic and spectroscopic techniques to gain insights into the various characteristics of the Ru e-ALE process.more » « less
An official website of the United States government

