skip to main content

This content will become publicly available on July 12, 2024

Title: Two-Terminal MoS 2 Memristor and the Homogeneous Integration with a MoS 2 Transistor for Neural Networks
Memristors are promising candidates for constructing neural networks. However, their dissimilar working mechanism to that of the addressing transistors can result in a scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-terminal MoS2 memristors that work with a charge-based mechanism similar to that in transistors, which enables the homogeneous integration with MoS2 transistors to realize one-transistor-one-memristor addressable cells for assembling programmable network. The homogenously integrated cells are implemented in a 2×2 network array to demonstrate the enabled addressability and programmability. The potential for assembling scalable network is evaluated in a simulated neural network using obtained realistic device parameters, which achieves over 91% pattern recognition accuracy. This study also reveals a generic mechanism and strategy that can be applied to other semiconducting devices for the engineering and homogeneous integration of memristive systems.  more » « less
Award ID(s):
2027102 1844904
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACS publications
Date Published:
Journal Name:
Nano Letters
Page Range / eLocation ID:
5869 to 5876
Subject(s) / Keyword(s):
["memristor","neural network","MoS2","2D materials","transistor"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambient air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm–2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies. 
    more » « less
  2. Abstract

    2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550 °C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing.

    more » « less
  3. Abstract

    2D memristors have demonstrated attractive resistive switching characteristics recently but also suffer from the reliability issue, which limits practical applications. Previous efforts on 2D memristors have primarily focused on exploring new material systems, while damage from the metallization step remains a practical concern for the reliability of 2D memristors. Here, the impact of metallization conditions and the thickness of MoS2films on the reliability and other device metrics of MoS2‐based memristors is carefully studied. The statistical electrical measurements show that the reliability can be improved to 92% for yield and improved by ≈16× for average DC cycling endurance in the devices by reducing the top electrode (TE) deposition rate and increasing the thickness of MoS2films. Intriguing convergence of switching voltages and resistance ratio is revealed by the statistical analysis of experimental switching cycles. An “effective switching layer” model compatible with both monolayer and few‐layer MoS2, is proposed to understand the reliability improvement related to the optimization of fabrication configuration and the convergence of switching metrics. The Monte Carlo simulations help illustrate the underlying physics of endurance failure associated with cluster formation and provide additional insight into endurance improvement with device fabrication optimization.

    more » « less
  4. Abstract

    The investigation of twisted stacked few‐layer MoS2has revealed novel electronic, optical, and vibrational properties over an extended period. For the successful integration of twisted stacked few‐layer MoS2into a wide range of applications, it is crucial to employ a noninvasive, versatile technique for characterizing the layered architecture of these complex structures. In this work, we introduce a machine learning‐assisted low‐frequency Raman spectroscopy method to characterize the twist angle of few‐layer stacked MoS2samples. A feedforward neural network (FNN) is utilized to analyze the low‐frequency breathing mode as a function of the twist angle. Moreover, using finite difference method (FDM) and density functional theory (DFT) calculations, we show that the low‐frequency Raman spectra of MoS2are mainly influenced by the effect of the nearest and second nearest layers. A new improved linear chain model (TA‐LCM) with taking the twist angle into the consideration is developed to understand the interlayer breathing modes of stacked few‐layer MoS2. This approach can be extended to other 2D materials systems and provides an intelligent way to investigate naturally stacked and twisted interlayer interactions.

    more » « less
  5. Abstract

    The performance of electronic/optoelectronic devices is governed by carrier injection through metal–semiconductor contact; therefore, it is crucial to employ low‐resistance source/drain contacts. However, unintentional introduction of extrinsic defects, such as substoichiometric oxidation states at the metal–semiconductor interface, can degrade carrier injection. In this report, controlling the unintentional extrinsic defect states in layered MoS2is demonstrated using a two‐step chemical treatment, (NH4)2S(aq) treatment and vacuum annealing, to enhance the contact behavior of metal/MoS2interfaces. The two‐step treatment induces changes in the contact of single layer MoS2field effect transistors from nonlinear Schottky to Ohmic behavior, along with a reduction of contact resistance from 35.2 to 5.2 kΩ. Moreover, the enhancement ofIONand electron field effect mobility of single layer MoS2field effect transistors is nearly double forn‐branch operation. This enhanced contact behavior resulting from the two‐step treatment is likely due to the removal of oxidation defects, which can be unintentionally introduced during synthesis or fabrication processes. The removal of oxygen defects is confirmed by scanning tunneling microscopy and X‐ray photoelectron spectroscopy. This two‐step (NH4)2S(aq) chemical functionalization process provides a facile pathway to controlling the defect states in transition metal dichalcogenides (TMDs), to enhance the metal‐contact behavior of TMDs.

    more » « less