skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precision cosmology with primordial GW backgrounds in presence of astrophysical foregrounds
Abstract The era of Gravitational-Wave (GW) astronomy will grant the detection of the astrophysical GW background from unresolved mergers of binary black holes, and the prospect of probing the presence of primordial GW backgrounds. In particular, the low-frequency tail of the GW spectrum for causally-generated primordial signals (like a phase transition) offers an excellent opportunity to measure unambiguously cosmological parameters as the equation of state of the universe, or free-streaming particles at epochs well before recombination. We discuss whether this programme is jeopardised by the uncertainties on the astrophysical GW foregrounds that coexist with a primordial background. We detail the motivated assumptions under which the astrophysical foregrounds can be assumed to be known in shape, and only uncertain in their normalisation. In this case, the sensitivity to a primordial signal can be computed by a simple and numerically agile procedure, where the optimal filter function subtracts the components of the astrophysical foreground that are close in spectral shape to the signal. We show that the degradation of the sensitivity to the signal in presence of astrophysical foregrounds is limited to a factor of a few, and only around the frequencies where the signal is closer to the foregrounds. Our results highlight the importance of modelling the contributions of eccentric or intermediate-mass black hole binaries to the GW background, to consolidate the prospects to perform precision cosmology with primordial GW backgrounds.  more » « less
Award ID(s):
2014215
PAR ID:
10477538
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2023
Issue:
04
ISSN:
1475-7516
Page Range / eLocation ID:
054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rayleigh scattering of the cosmic microwave background (CMB) by neutral hydrogen shortly after recombination leaves frequency-dependent imprints on intensity and polarization fluctuations. High signal-to-noise observations of CMB Rayleigh scattering would provide additional insight into the physics of recombination, including greater constraining power for parameters like the primordial helium fraction, the light relic density, and the sum of neutrino masses. However, such a measurement of CMB Rayleigh scattering is challenging due to the presence of astrophysical foregrounds, which are more intense at the high frequencies, where the effects of Rayleigh scattering are most prominent. Here we forecast the detectability of CMB Rayleigh scattering including foreground removal using blind internal linear combination methods for a set of near-future surveys. We show that atmospheric effects for ground-based observatories and astrophysical foregrounds pose a significant hindrance to detecting CMB Rayleigh scattering with experiments planned for this decade, though a high-significance measurement should be possible with a future CMB satellite. 
    more » « less
  2. Abstract Identifying the anisotropies in a cosmologically sourced stochastic gravitational wave background (SGWB) would be of significance in shedding light on the nature of primordial inhomogeneities.For example, if SGWB carries isocurvature fluctuations, it would provide evidence for a multi-field inflationary origin of these inhomogeneities.However, this is challenging in practice due to finite detector sensitivity and also the presence of the astrophysical foregrounds that can compete with the cosmological signal.In this work, we explore the prospects for measuring cosmological SGWB anisotropies in the presence of an astrophysical counterpart and detector noise.To illustrate the main idea, we perform a Fisher analysis using a well-motivated cosmological SGWB template corresponding to a first order phase transition,and an astrophysical SGWB template corresponding to extra-galactic binary mergers, and compute the uncertainty with which various parameters characterizing the isotropic and anisotropic components can be extracted.We also discuss some subtleties and caveats involving shot noise in the astrophysical foreground.Overall, we show that upcoming experiments, e.g., LISA, Taiji, Einstein Telescope, Cosmic Explorer, and BBO, can all be effective in discovering plausible anisotropic cosmological SGWBs. 
    more » « less
  3. Abstract With strong evidence of a common-spectrum stochastic process in the most recent data sets from the NANOGrav Collaboration, the European Pulsar Timing Array (PTA), Parkes PTA, and the International PTA, it is crucial to assess the effects of the several astrophysical and cosmological sources that could contribute to the stochastic gravitational wave background (GWB). Using the same data set creation and injection techniques as in Pol et al., we assess the separability of multiple GWBs by creating single and multiple GWB source data sets. We search for these injected sources using Bayesian PTA analysis techniques to assess recovery and separability of multiple astrophysical and cosmological backgrounds. For a GWB due to supermassive black hole binaries and an underlying weaker background due to primordial gravitational waves with a GW energy-density ratio of ΩPGWSMBHB= 0.5, the Bayes’ factor for a second process exceeds unity at 17 yr, and increases with additional data. At 20 yr of data, we are able to constrain the spectral index and amplitude of the weaker GWB at this density ratio to a fractional uncertainty of 64% and 110%, respectively, using current PTA methods and techniques. Using these methods and findings, we outline a basic protocol to search for multiple backgrounds in future PTA data sets. 
    more » « less
  4. Abstract Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we derive the Cramér–Rao bound for both cosmological parameters and those governing the astrophysical population model from this statistical dark siren method by examining the Fisher information contained in the event distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when there are more than 104BBH events detected. 
    more » « less
  5. A bstract It is well-known that first-order phase transitions in the early universe can be a powerful source of observable stochastic gravitational wave backgrounds. Any such gravitational wave background must exhibit large-scale anisotropies at least as large as those seen in the CMB 10 − 5 , providing a valuable new window onto the (inflationary) origins of primordial fluctuations. While significantly larger fractional anisotropies are possible (for example, in multi-field inflation) and would be easier to interpret, it has been argued that these can only be consistent with CMB bounds if the gravitational wave signal is correspondingly smaller. In this paper, we show that this argument, which relies on assuming radiation dominance of the very early universe, can be evaded if there is an era of early matter dominance of a certain robust type. This allows large gravitational wave anisotropies to be consistent with observable signals at proposed future gravitational wave detectors. Constraints from the CMB on large scales, as well as primordial black hole and mini-cluster formation on small scales, and secondary scalar-induced gravitational waves are all taken into account. 
    more » « less