skip to main content


Title: Ionic Liquid-Mediated Route to Atomic Layer Deposition of Tin(II) Oxide via a C–C Bond Cleavage Ligand Modification Mechanism
Atomic layer deposition (ALD) is a technologically important method to grow thin films with high conformality and excellent thickness control from vapor phase precursors. The development of new thermal ALD processes can be limited by precursor reactivity and stability: reaction temperature and precursor design are among the few variables available to achieve higher reactivity, unlike in solution synthesis where the use of solvent and/or a catalyst can promote a desired reaction. To bridge this synthesis gap between vapor and solution, we demonstrate the use of an ultrathin coating layer of a vapor-phase compatible solvent—an ionic liquid (IL)— onto our growth substrate to perform ALD of SnO. Successful SnO deposition is achieved using tin acetylacetonate and water, a process that otherwise would require a stronger counter-reactant such as ozone. The layer of IL allows a solvent-mediated reaction mechanism to take place on the growth substrate. We report a growth per cycle of 0.67 Å/cycle at a deposition temperature of 100 °C in an IL comprised of 1-ethyl-3-methylimidazolium hydrogen sulfate. Characterization of the ALD films confirms the SnO film composition, and 1H and 13C NMR are used to probe the solvent-mediated ALD reaction, suggesting a solvent-mediated addition-elimination type mechanism forming acetone and acetate. Density functional theory calculations show that the ionic liquid solvent is beneficial to the proposed solvent-mediated mechanism by lowering the C-C bond cleavage energetics of acetylacetonate compared to the vapor phase. A general class of ligand-modification reactions for thermal ALD is thus introduced in this work.  more » « less
Award ID(s):
1904108
NSF-PAR ID:
10477748
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
144
Issue:
47
ISSN:
0002-7863
Page Range / eLocation ID:
21772 to 21782
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Achieving facile nucleation of noble metal films through atomic layer deposition (ALD) is extremely challenging. To this end, η4‐2,3‐dimethylbutadiene ruthenium(0)tricarbonyl (Ru(DMBD)(CO)3), a zero‐valent complex, has recently been reported to achieve good nucleation by ALD at relatively low temperatures and mild reaction conditions. The authors study the growth mechanism of this precursor by in situ quartz‐crystal microbalance and quadrupole mass spectrometry during Ru ALD, complemented by ex situ film characterization and kinetic modeling. These studies reveal that Ru(DMBD)(CO)3produces high‐quality Ru films with excellent nucleation properties. This results in smooth, coalesced films even at low film thicknesses, all important traits for device applications. However, Ru deposition follows a kinetically limited decarbonylation reaction scheme, akin to typical chemical vapor deposition processes, with a strong dependence on both temperature and reaction timescale. The non‐self‐limiting nature of the kinetically driven mechanism presents both challenges for ALD implementation and opportunities for process tuning. By surveying reports of similar precursors, it is suggested that the findings can be generalized to the broader class of zero‐oxidation state carbonyl‐based precursors used in thermal ALD, with insight into the design of effective saturation studies.

     
    more » « less
  2. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  3. To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing. 
    more » « less
  4. Chalcogenide perovskites have attracted increasing research attention in recent years due to their promise of unique optoelectronic properties combined with stability. However, the synthesis and processing of these materials has been constrained by the need for high temperatures and/or long reaction times. In this work, we address the open question of a low-temperature growth mechanism for BaZrS3. Ultimately, a liquid-assisted growth mechanism for BaZrS3 using molten BaS3 as a flux is demonstrated at temperatures ≥540 °C in as little as 5 min. The role of Zr-precursor reactivity and S(g.) on the growth mechanism and the formation of Ba3Zr2S7 is discussed, in addition to the purification of resulting products using a straightforward H2O wash. The extension of this growth mechanism to other Ba-based chalcogenides is shown, including BaHfS3, BaNbS3, and BaTiS3. In addition, an alternative vapor-transport growth mechanism is presented using S2Cl2 for the growth of BaZrS3 at temperatures as low as 500 °C in at least 3 h. These results demonstrate the feasibility of scalable processing for the formation of chalcogenide perovskite thin-films. (DOI: 10.1021/acs.chemmater.3c00494) 
    more » « less
  5. Abstract

    Wet chemical screening reveals the very high reactivity of Mo(NMe2)4with H2S for the low‐temperature synthesis of MoS2. This observation motivated an investigation of Mo(NMe2)4as a volatile precursor for the atomic layer deposition (ALD) of MoS2thin films. Herein we report that Mo(NMe2)4enables MoS2film growth at record low temperatures—as low as 60 °C. The as‐deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift‐off patterning for the straightforward fabrication of diverse device structures.

     
    more » « less