Abstract Quantum annealing (QA) is a continuous-time heuristic quantum algorithm for solving or approximately solving classical optimization problems. The algorithm uses a schedule to interpolate between a driver Hamiltonian with an easy-to-prepare ground state and a problem Hamiltonian whose ground state encodes solutions to an optimization problem. The standard implementation relies on the evolution being adiabatic: keeping the system in the instantaneous ground state with high probability and requiring a time scale inversely related to the minimum energy gap between the instantaneous ground and excited states. However, adiabatic evolution can lead to evolution times that scale exponentially with the system size, even for computationally simple problems. Here, we study whether non-adiabatic evolutions with optimized annealing schedules can bypass this exponential slowdown for one such class of problems called the frustrated ring model. For sufficiently optimized annealing schedules and system sizes of up to 39 qubits, we provide numerical evidence that we can avoid the exponential slowdown. Our work highlights the potential of highly-controllable QA to circumvent bottlenecks associated with the standard implementation of QA.
more »
« less
FastHare: Fast Hamiltonian Reduction for Large-scale Quantum Annealing
Quantum annealing (QA) that encodes optimization problems into Hamiltonians remains the only near-term quantum computing paradigm that provides sufficient qubits for real-world applications. To fit larger optimization instances on existing quantum annealers, reducing Hamiltonians into smaller equivalent Hamiltonians provides a promising approach. Unfortunately, existing reduction techniques are either computationally expensive or ineffective in practice. To this end, we introduce a novel notion of non-separable group, defined as a subset of qubits in a Hamiltonian that obtains the same value in optimal solutions. We develop a non-separability theory accordingly and propose FastHare, a highly efficient reduction method. FastHare, iteratively, detects and merges non-separable groups into single qubits. It does so within a provable worst-case time complexity of only O(αn^2), for some user-defined parameter α. Our extensive benchmarks for the feasibility of the reduction are done on both synthetic Hamiltonians and 3000+ instances from the MQLIB library. The results show FastHare outperforms the roof duality, the implemented reduction in D-Wave’s library. It demonstrates a high level of effectiveness with an average of 62% qubits saving and 0.3s processing time, advocating for Hamiltonian reduction as an inexpensive necessity for QA.
more »
« less
- Award ID(s):
- 2229075
- PAR ID:
- 10477830
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Quantum Computing and Engineering (QCE)
- ISBN:
- 978-1-6654-9113-6
- Page Range / eLocation ID:
- 114 to 124
- Subject(s) / Keyword(s):
- Qubit-reduction Ising Hamiltonian Quantum annealing non-separable group
- Format(s):
- Medium: X
- Location:
- Broomfield, CO, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adiabatic computing with two degrees of freedom of 2-local Hamiltonians has been theoretically shown to be equivalent to the gate model of universal quantum computing. But today’s quantum annealers, namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamiltonian abstraction with a single degree of freedom. This raises the question what subset of gate programs can be expressed as quadratic unconstrained binary problems (QUBOs) on the D-Wave. The problem is of interest because gate-based quantum platforms are currently limited to 20 qubits while D-Wave provides 2,000 qubits. However, when transforming entire gate circuits into QUBOs, additional qubits will be required. The objective of this work is to determine a subset of quantum gates suitable for transformation into single-degree 2-local Ising Hamiltonians under a common qubit base representation such that they comprise a compound circuit suitable for pure quantum computation, i.e., without having to switch between classical and quantum computing for different bases. To this end, this work contributes, for the first time, a fully automated method to translate quantum gate circuits comprised of a subset of common gates expressed as an IBM Qiskit program to single-degree 2-local Ising Hamiltonians, which are subsequently embedded in the D-Wave 2000Q chimera graph. These gate elements are placed in the chimera graph and augmented by constraints that enforce inter-gate logical relationships, resulting in an annealer embedding that completely characterizes the overall gate circuit. Annealer embeddings for several example quantum gate circuits are then evaluated on D-Wave 2000Q hardware.more » « less
-
We present the Hybrid Polar Decoder (HyPD), a hybrid of classical CMOS and quantum annealing (QA) computational structures for decoding Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD considers CMOS for the Polar code’s binary tree traversal, and QA for executing a Quantum Polar Decoder (QPD)–a novel QA-based maximum likelihood submodule. Our QPD design efficiently transforms a Polar decoder into a quadratic polynomial optimization form amenable to the QA’s optimization process. We experimentally evaluate HyPD on a state-of-the-art QA device with 5,627 qubits, for Polar codes of block length 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms successive cancellation list decoders of list size eight by half an order of bit error rate magnitude at 1 dB SNR. Further experimental studies address QA compute time at various code rates, and with increased QA qubit numbers.more » « less
-
null (Ed.)We describe the contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation to the ground state energy is obtained as the sum of two contributions. The first contribution comes from a noncontextual approximation to the Hamiltonian, and is computed classically. The second contribution is obtained by using the variational quantum eigensolver (VQE) technique to compute a contextual correction on a quantum processor. In general the VQE computation of the contextual correction uses fewer qubits and measurements than the VQE computation of the original problem. Varying the number of qubits used for the contextual correction adjusts the quality of the approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that the number of qubits required to reach chemical accuracy can be reduced by more than a factor of two. The number of terms required to compute the contextual correction can be reduced by more than a factor of ten, without the use of other measurement reduction schemes. This indicates that CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum devices.more » « less
-
Quantum annealing (QA) is a promising optimization technique used to find global optimal solution of a combinatorial optimization problem by leveraging quantum fluctuations. In QA, the problem being solved is mapped onto the quantum processing unit (QPU) composed of qubits through a procedure called minor-embedding. The qubits are connected by a network of couplers, which determine the strength of the interactions between the qubits. The strength of the couplers that connect qubits within a chain is often referred to as the chain strength. The appropriate balance of chain strength is equally imperative in enabling the qubits to interact with one another in a way that is strong enough to obtain the optimal solution, but not excessively strong so as not to bias the original problem terms. To this end, we address the problem of identifying the optimal chain strength through the utilization of Path Integral Monte Carlo (PIMC) quantum simulation algorithm. The results indicate that our judicious choice of chain strength parameter facilitates enhancements in quantum annealer performance and solution quality, thereby paving the way for QA to compete with, or potentially outperform, classical optimization algorithms.more » « less