skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comptonization by reconnection plasmoids in black hole coronae – III. Dependence on the guide field in pair plasma
ABSTRACT We perform non-radiative two-dimensional particle-in-cell simulations of magnetic reconnection for various strengths of the guide field (perpendicular to the reversing field), in magnetically dominated electron–positron plasmas. Magnetic reconnection under such conditions could operate in accretion disc coronae around black holes. There, it has been suggested that the transrelativistic bulk motions of reconnection plasmoids containing inverse-Compton-cooled electrons could Compton-upscatter soft photons to produce the observed non-thermal hard X-rays. Our simulations are performed for magnetizations 3 ≤ σ ≤ 40 (defined as the ratio of enthalpy density of the reversing field to plasma enthalpy density) and guide field strengths 0 ≤ Bg/B0 ≤ 1 (normalized to the reversing field strength B0). We find that the mean bulk energy of the reconnected plasma depends only weakly on the flow magnetization but strongly on the guide field strength – with Bg/B0 = 1 yielding a mean bulk energy twice smaller than Bg/B0 = 0. Similarly, the dispersion of bulk motions around the mean – a signature of stochasticity in the plasmoid chain’s motions – is weakly dependent on magnetization (for σ ≳ 10) but strongly dependent on the guide field strength – dropping by more than a factor of two from Bg/B0 = 0 to Bg/B0 = 1. In short, reconnection in strong guide fields (Bg/B0 ∼ 1) leads to slower and more ordered plasmoid bulk motions than its weak guide field (Bg/B0 ∼ 0) counterpart.  more » « less
Award ID(s):
2108201
PAR ID:
10477931
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 6065-6075
Size(s):
p. 6065-6075
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes. 
    more » « less
  2. ABSTRACT We perform 2D particle-in-cell simulations of magnetic reconnection in electron-ion plasmas subject to strong Compton cooling and calculate the X-ray spectra produced by this process. The simulations are performed for trans-relativistic reconnection with magnetization 1 ≤ σ ≤ 3 (defined as the ratio of magnetic tension to plasma rest-mass energy density), which is expected in the coronae of accretion discs around black holes. We find that magnetic dissipation proceeds with inefficient energy exchange between the heated ions and the Compton-cooled electrons. As a result, most electrons are kept at a low temperature in Compton equilibrium with radiation, and so thermal Comptonization cannot reach photon energies $$\sim 100\,$$ keV observed from accreting black holes. Nevertheless, magnetic reconnection efficiently generates $$\sim 100\,$$ keV photons because of mildly relativistic bulk motions of the plasmoid chain formed in the reconnection layer. Comptonization by the plasmoid motions dominates the radiative output and controls the peak of the radiation spectrum Epk. We find Epk ∼ 40 keV for σ = 1 and Epk ∼ 100 keV for σ = 3. In addition to the X-ray peak around 100 keV, the simulations show a non-thermal MeV tail emitted by a non-thermal electron population generated near X-points of the reconnection layer. The results are consistent with the typical hard state of accreting black holes. In particular, we find that the spectrum of Cygnus X-1 is well explained by electron-ion reconnection with σ ∼ 3. 
    more » « less
  3. ABSTRACT The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres. 
    more » « less
  4. Magnetic reconnection, a plasma process converting magnetic energy to particle kinetic energy, is often invoked to explain magnetic energy releases powering high-energy flares in astrophysical sources including pulsar wind nebulae and black hole jets. Reconnection is usually seen as the (essentially two-dimensional) nonlinear evolution of the tearing instability disrupting a thin current sheet. To test how this process operates in three dimensions, we conduct a comprehensive particle-in-cell simulation study comparing two- and three-dimensional evolution of long, thin current sheets in moderately magnetized, collisionless, relativistically hot electron–positron plasma, and find dramatic differences. We first systematically characterize this process in two dimensions, where classic, hierarchical plasmoid-chain reconnection determines energy release, and explore a wide range of initial configurations, guide magnetic field strengths and system sizes. We then show that three-dimensional (3-D) simulations of similar configurations exhibit a diversity of behaviours, including some where energy release is determined by the nonlinear relativistic drift-kink instability. Thus, 3-D current sheet evolution is not always fundamentally classical reconnection with perturbing 3-D effects but, rather, a complex interplay of multiple linear and nonlinear instabilities whose relative importance depends sensitively on the ambient plasma, minor configuration details and even stochastic events. It often yields slower but longer-lasting and ultimately greater magnetic energy release than in two dimensions. Intriguingly, non-thermal particle acceleration is astonishingly robust, depending on the upstream magnetization and guide field, but otherwise yielding similar particle energy spectra in two and three dimensions. Although the variety of underlying current sheet behaviours is interesting, the similarities in overall energy release and particle spectra may be more remarkable. 
    more » « less
  5. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare. 
    more » « less