skip to main content

Title: Subseasonal Prediction of Impactful California Winter Weather in a Hybrid Dynamical‐Statistical Framework

Atmospheric rivers (ARs) and Santa Ana winds (SAWs) are impactful weather events for California communities. Emergency planning efforts and resource management would benefit from extending lead times of skillful prediction for these and other types of extreme weather patterns. Here we describe a methodology for subseasonal prediction of impactful winter weather in California, including ARs, SAWs and heat extremes. The hybrid approach combines dynamical model and historical information to forecast probabilities of impactful weather outcomes at weeks 1–4 lead. This methodology uses dynamical model information considered most reliable, that is, planetary/synoptic‐scale atmospheric circulation, filters for dynamical model error/uncertainty at longer lead times and increases the sample of likely outcomes by utilizing the full historical record instead of a more limited suite of dynamical forecast model ensemble members. We demonstrate skill above climatology at subseasonal timescales, highlighting potential for use in water, health, land, and fire management decision support.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fire emissions of gases and aerosols alter atmospheric composition and have substantial impacts on climate, ecosystem function, and human health. Warming climate and human expansion in fire‐prone landscapes exacerbate fire impacts and call for more effective management tools. Here we developed a global fire forecasting system that predicts monthly emissions using past fire data and climate variables for lead times of 1 to 6 months. Using monthly fire emissions from the Global Fire Emissions Database (GFED) as the prediction target, we fit a statistical time series model, the Autoregressive Integrated Moving Average model with eXogenous variables (ARIMAX), in over 1,300 different fire regions. Optimized parameters were then used to forecast future emissions. The forecast system took into account information about region‐specific seasonality, long‐term trends, recent fire observations, and climate drivers representing both large‐scale climate variability and local fire weather. We cross‐validated the forecast skill of the system with different combinations of predictors and forecast lead times. The reference model, which combined endogenous and exogenous predictors with a 1 month forecast lead time, explained 52% of the variability in the global fire emissions anomaly, considerably exceeding the performance of a reference model that assumed persistent emissions during the forecast period. The system also successfully resolved detailed spatial patterns of fire emissions anomalies in regions with significant fire activity. This study bridges the gap between the efforts of near‐real‐time fire forecasts and seasonal fire outlooks and represents a step toward establishing an operational global fire, smoke, and carbon cycle forecasting system.

    more » « less
  2. Abstract

    Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks. As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system. We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and heatwaves.

    Significance Statement

    Heatwaves (prolonged extremely warm temperatures) cause thousands of fatalities worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning methods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves more than two weeks in advance. These early warnings can be used to activate effective and timely response plans targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves.

    more » « less
  3. Abstract

    The use of hydro‐meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro‐meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast‐informed decision‐making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto‐correlated, and non‐Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium‐range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space‐time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis.

    more » « less
  4. Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly important for both flood control and water supply management in reservoirs across California. This study examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit recurrent spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to diagnose the causes of precipitation forecast biases. We investigate the temporal evolution of forecast error to characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across different domains of the North American west coast during heavy precipitation events in the Sacramento basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors of forecasted synoptic-scale features, especially at long (5–15 days) leads. Moreover, we find evidence that forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy precipitation events within the basin. These results suggest the potential for using medium-range forecasts of large-scale climate features across the Pacific–North American sector, rather than just local forecasts of basin-scale precipitation, when designing forecast-informed reservoir operations. 
    more » « less
  5. Abstract

    In the Colorado River Basin (CRB), ensemble streamflow prediction (ESP) forecasts drive operational planning models that project future reservoir system conditions. CRB operational seasonal streamflow forecasts are produced using ESP, which represents climate using an ensemble of meteorological sequences of historical temperature and precipitation, but do not typically leverage additional real‐time subseasonal‐to‐seasonal climate forecasts. Any improvements to streamflow forecasts would help stakeholders who depend on operational projections for decision making. We explore incorporating climate forecasts into ESP through variations on an ESP trace weighting approach, focusing on Colorado River unregulated inflows forecasts to Lake Powell. The k‐nearest neighbors (kNN) technique is employed using North American Multi‐Model Ensemble one‐ and three‐month temperature and precipitation forecasts, and preceding three‐month historical streamflow, as weighting factors. The benefit of disaggregated climate forecast information is assessed through the comparison of two kNN weighting strategies; a basin‐wide kNN uses the same ESP weights over the entire basin, and a disaggregated‐basin kNN applies ESP weights separately to four subbasins. We find in general that climate‐informed forecasts add greater marginal skill in late winter and early spring, and that more spatially granular disaggregated‐basin use of climate forecasts slightly improves skill over the basin‐wide method at most lead times.

    more » « less