Snow albedo, a measure of the amount of solar radiation that is reflected at the snow surface, plays a critical role in Earth’s climate and in regional hydrology because it is a primary driver of snowmelt timing. Satellite multi-spectral remote sensing provides a multi-decade record of land surface reflectance, from which snow albedo can be retrieved. However, this observational record is challenging to assess because discretein situobservations are not well suited for validation of snow properties at the spatial resolution of satellites (tens to hundreds of meters). For example, snow grain size, a primary driver of snow albedo, can vary at the sub-meter scale driven by changes in aspect, elevation, and vegetation. Here, we present a new uncrewed aerial vehicle hyperspectral imaging (UAV-HSI) method for mapping snow surface properties at high resolution (20 cm). A Resonon near-infrared HSI was flown on a DJI Matrice 600 Pro over the meadow encompassing Swamp Angel Study Plot in Senator Beck Basin, Colorado. Using a radiative transfer forward modeling approach, effective snow grain size and albedo maps were produced from measured surface reflectance. Coincident ground observations were used for validation; relative to retrievals from a field spectrometer the mean grain size difference was 2 μm, with an RMSE of 12 μm, and the mean broadband albedo was within 1% of that measured near the center of the flight area. Even though the snow surface was visually homogenous, the maps showed spatial variability and coherent patterns in the freshly fallen snow. To demonstrate the potential for UAV-HSI to be used to improve validation of satellite retrievals, the high-resolution maps were used to assess grain size and albedo retrievals, and subpixel variability, across 17 Landsat 9 OLI pixels from a satellite overpass with similar conditions two days following the flight. Although Landsat 9 did not capture the same range of values and spatial variability as the UAV-HSI, on average the comparison showed good agreement, with a mean grain size difference of 9 μm and the same broadband albedo (86%).
more »
« less
The spatial and temporal influence of infrastructure and road dust on seasonal snowmelt, vegetation productivity, and early season surface water cover in the Prudhoe Bay Oilfield
Increased industrial development in the Arctic has led to a rapid expansion of infrastructure in the region. Localized impacts of infrastructure on snow distribution, road dust, and snowmelt timing and duration feeds back into the coupled Arctic system causing a series of cascading effects that remain poorly understood. We quantify spatial and temporal patterns of snow-off dates in the Prudhoe Bay Oilfield, Alaska, using Sentinel-2 data. We derive the Normalized Difference Snow Index to quantify snow persistence in 2019–2020. The Normalized Difference Vegetation Index and Normalized Difference Water Index were used to show linkages of vegetation and surface hydrology, in relationship to patterns of snowmelt. Newly available infrastructure data were used to analyze snowmelt patterns in relation infrastructure. Results show a relationship between snowmelt and distance to infrastructure varying by use and traffic load, and orientation relative to the prevailing wind direction (up to 1 month difference in snow-free dates). Post-snowmelt surface water area showed a strong negative correlation (up to −0.927) with distance to infrastructure. Results from field observations indicate an impact of infrastructure on winter near-surface ground temperature and snow depth. This study highlights the impact of infrastructure on a large area beyond the direct human footprint and the interconnectedness between snow-off timing, vegetation, surface hydrology, and near-surface ground temperatures.
more »
« less
- PAR ID:
- 10478645
- Publisher / Repository:
- Canadian Science Publishing
- Date Published:
- Journal Name:
- Arctic Science
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2368-7460
- Page Range / eLocation ID:
- 243 to 259
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Patterns of alpine plant productivity are extremely variable in space and time. Complex topography drives variations in temperature, wind, and solar radiation. Surface and subsurface flow paths route water between landscape patches. Redistribution of snow creates scour zones and deep drifts, which drives variation in water availability and growing season length. Hence, the distribution of snow likely plays a central role in patterns of alpine plant productivity. Given that these processes operate at sub‐1 m to sub‐10 m spatial scales and are dynamic across daily to weekly time scales, historical studies using manual survey techniques have not afforded a comprehensive assessment of the influence of snow distribution on plant productivity. To address this knowledge gap, we used weekly estimates of normalised difference vegetation index (NDVI), snow extent, and peak snow depth, acquired from drone surveys at 25 cm resolution. We derived six snowpack‐related and topographic variables that may influence vegetation productivity and analysed these with respect to the timing and magnitude of peak productivity. Peak NDVI and peak NDVI timing were most highly correlated with maximum snow depth, and snow‐off‐date. We observed up to a ~30% reduction in peak NDVI for areas with deeper and later snow cover, and a ~11‐day delay in the timing of peak NDVI in association with later snow‐off‐date. Our findings leverage a novel approach to quantify the importance of snow distribution in driving alpine vegetation productivity and provide a space for time proxy of potential changes in a warmer, lower snow future.more » « less
-
Abstract In the western United States, water supplies largely originate as snowmelt from forested land. Forests impact the water balance of these headwater streams, yet most predictive runoff models do not explicitly account for changing snow‐vegetation dynamics. Here, we present a case study showing how warmer temperatures and changing forests in the Henrys Fork of the Snake River, a seasonally snow‐covered headwater basin in the Greater Yellowstone Ecosystem, have altered the relationship between April 1st snow water equivalent (SWE) and summer streamflow. Since the onset and recovery of severe drought in the early 2000s, predictive models based on pre‐drought relationships over‐predict summer runoff in all three headwater tributaries of the Henrys Fork, despite minimal changes in precipitation or snow accumulation. Compared with the pre‐drought period, late springs and summers (May–September) are warmer and vegetation is greener with denser forests due to recovery from multiple historical disturbances. Shifts in the alignment of snowmelt and energy availability due to warmer temperatures may reduce runoff efficiency by changing the amount of precipitation that goes to evapotranspiration versus runoff and recharge. To quantify the alignment between snowmelt and energy on a timeframe needed for predictive models, we propose a new metric, the Vegetation‐Water Alignment Index (VWA), to characterize the synchrony of vegetation greenness and snowmelt and rain inputs. New predictive models show that in addition to April 1st SWE, the previous year's VWA and summer reference evapotranspiration are the most significant predictors of runoff in each watershed and provide more predictive power than traditionally used metrics. These results suggest that the timing of snowmelt relative to the start of the growing season affects not only annual partitioning of streamflow, but can also determine the groundwater storage state that dictates runoff efficiency the following spring.more » « less
-
Abstract In the mountainous headwaters of the Colorado River episodic dust deposition from adjacent arid and disturbed landscapes darkens snow and accelerates snowmelt, impacting basin hydrology. Patterns and impacts across the heterogenous landscape cannot be inferred from current in situ observations. To fill this gap daily remotely sensed retrievals of radiative forcing and contribution to melt were analyzed over the MODIS period of record (2001–2023) to quantify spatiotemporal impacts of snow darkening. Each season radiative forcing magnitudes were lowest in early spring and intensified as snowmelt progressed, with interannual variability in timing and magnitude of peak impact. Over the full record, radiative forcing was elevated in the first decade relative to the last decade. Snowmelt was accelerated in all years and impacts were most intense in the central to southern headwaters. The spatiotemporal patterns motivate further study to understand controls on variability and related perturbations to snow water resources.more » « less
-
Abstract In 2022 we resampled normalized difference vegetation index (NDVI) along a 100 m transect in tundra near Utqiagvik, AK that had been previously measured through the 2000–2002 growing seasons, providing an opportunity to examine a 20 year NDVI change at a 1 m resolution in a region that is experiencing increased warming and precipitation over this period. Multidecadal NDVI change was spatially variable across the transect with nearly half of the transect showing greening, about a third not showing conclusive change, and about 20% browning. In wet areas, greening (increased NDVI) was associated with increased green leaf area index, while in drier areas greening was related to changes in species cover. Browning was not related to change in species cover and appeared to be due to increased coverage of standing dead material in graminoid dominated canopies. These types of detailed observations provide insights into the interpretation of satellite based NDVI trends and emphasize the importance of microtopography and hydrology in mediating vegetation change in a warming Arctic.more » « less
An official website of the United States government

