skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determining sequential micellization steps of bile salts with multi-CMC modeling
Hypothesis: Bile salts exhibit complex concentration-dependent micellization in aqueous solution, rooted in a long-standing hypothesis of increasing size in bile aggregation that has historically focused on the measurement of only one CMC detected by a given method, without resolving successive stepwise aggregates. Whether bile aggregation is continuous or discrete, at what concentration does the first aggregate form, and how many aggregation steps occur, all remain as open questions. Experiments: Bile salt critical micelle concentrations (CMCs) were investigated with NMR chemical shift titrations and a multi-CMC phase separation modeling approach developed herein. The proposed strategy is to establish a correspondence of the phase separation and mass action models to treat the first CMC; subsequent micellization steps, involving larger micelles, are then treated as phase separation events. Findings: The NMR data and the proposed multi-CMC model reveal and resolve multiple closely spaced sequential preliminary, primary, and secondary discrete CMCs in dihydroxy and trihydroxy bile salt systems in basic (pH 12) solutions with a single model of one NMR data set. Complex NMR data are closely explained by the model. Four CMCs are established in deoxycholate below 100 mM (298 K, pH 12): 3.8 ± 0.5 mM, 9.1 ± 0.3 mM, 27 ± 2 mM, and 57 ± 4 mM, while three CMCs were observed in multiple bile systems, also under basic conditions. Global fitting leverages the sensitivity of different protons to different aggregation stages. In resolving these closely spaced CMCs, the method also obtains chemical shifts of these spectroscopically inaccessible (aka dark) states of the distinct micelles.  more » « less
Award ID(s):
1800401 2018547
PAR ID:
10478727
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Colloid and Interface Science
Volume:
644
Issue:
C
ISSN:
0021-9797
Page Range / eLocation ID:
496 to 508
Subject(s) / Keyword(s):
bile salts, critical micelle concentration, nuclear magnetic resonance, NMR, phase separation, mass action
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrical conductimetry and dynamic light scattering (DLS) were used to investigate the aggregation behaviors of four amino acid-based surfactants (AABSs; undecanoyl-glycine, undecanoyl-l-alanine, undecanoyl-l-valine, undecanoyl-l-leucine) in the presence of five linear diamine counterions (1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane). Electrical conductimetry was used to measure the CMCs for each system, which ranged from 5.1 to 22.5 mM. With respect to counterions, the obtained CMCs decreased with increases in the interamine spacer length; this was attributed to the improved torsional binding flexibility in longer counterions. Strong linear correlations (mean R2 = 0.9443) were observed between the CMCs and predicted surfactant partition coefficients (logP; water/octanol), suggesting that micellization is primarily driven by the AABS’s hydrophobicity for these systems. However, significant deviations in this linear relationship were observed for systems containing 1,2-diaminoethane, 1,4-diaminobutane, and 1,6-diaminohexane (p = 0.0774), suggesting altered binding dynamics for these counterions. pH measurements during the CMC determination experiments indicated the full deprotonation of the AABSs but did not give clear insights into the counterion protonation states, thus yielding an inconclusive evaluation of their charge stabilization effects during binding. However, DLS measurements revealed that the micellar size remained largely independent of the counterion length for counterions longer than 1,2-diaminoethane, with hydrodynamic diameters ranging from 2.2 to 2.8 nm. This was explained by the formation of charge-stabilized noncovalent dimers, with each counterion bearing a full +2 charge. Conductimetry-based estimates of the degrees of counterion binding (β) and free energies of micellization (ΔG°M) revealed that bulky AABSs exhibit preferential binding to counterions with an even number of methylene groups. It is proposed that when these counterions form noncovalent dimers, perturbations in their natural geometries result in the formation of a binding pocket that accommodates the AABS steric bulk. While the direct application of these systems remains to be seen, this study provides valuable insights into the structure–property relationships that govern AABS aggregation. 
    more » « less
  2. The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions. 
    more » « less
  3. The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines with varying spacer chain lengths between the two amine functional groups. The sodium counterion was studied as well. Results showed that when the length of the counterion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased. This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant monomers below the CMC and thus acting as templating agents for the formation of micelles. The entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were present in the solution. This amine also had the largest mole fraction of micelle-bound counterions. Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane counterions were bound to the micelle surface. A model was proposed in which this surfactant formed non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and likely spherically shaped. 
    more » « less
  4. Fluorinated surfactants are used in a wide range of applications that involve aqueous solvents incorporating various additives. The presence of organic compounds such as urea is expected to affect the self-assembly of fluorinated surfactants, however, very little is known about this. We investigated the effect of urea on the micellization in water of the common fluorinated surfactant ammonium perfluorooctanoate (APFO), and on the structure and microenvironment of the micelles that APFO forms. Addition of urea to aqueous APFO solution decreased the critical micellization concentration (CMC) and increased the counterion dissociation. The observed increase in surface area per APFO headgroup and decrease in packing density at the micelle surface suggest the localization of urea at the micelle surface in a manner that reduces headgroup repulsions. Micropolarity data further support this picture. The results presented here indicate that significant differences exist between urea effects on fluorinated surfactant and on hydrocarbon surfactant micellization in aqueous solution. For example, the CMC of sodium dodecyl sulfate (SDS) increased with urea addition, while the increase in surface area per headgroup and packing density of SDS with urea addition are much lower than those observed for APFO. This study informs fluorinated surfactant fate and transport in the environment, and also applications involving aqueous media in which urea or similar additives are present. 
    more » « less
  5. Application of inhibitors is an established and cost-effective method to mitigate internal corrosion of mild steel pipelines in the oil and gas industry. Conventionally, surfactant-type organic inhibitors are frequently applied based on their critical micelle concentration (CMC) values and their adsorption to mild steel evaluated based on laboratory tests that show a reduction in corrosion rate. In this work, the relationship between reduction in corrosion rate, CMC and inhibitor surface saturation concentration on mild steel was studied using model quaternary ammonium inhibitors with different alkyl tail lengths. The quaternary ammonium model compounds were synthesized in-house and characterized by 1H-NMR before their use. Their CMCs were determined using surface tension measurements. Results showed that, although the CMC value and surface saturation concentration were the same for two of the inhibitors tested, there was no relationship observed between measured CMC values, surface saturation concentrations, and the calculated corrosion efficiencies for the five model inhibitor compounds tested. Consequently, using CMC values as a measurement for injection of inhibitors might not be considered as a reliable factor. 
    more » « less