Abstract Metal‐semiconductor heterostructures providing geometrically reproducible and abrupt Schottky nanojunctions are highly anticipated for the realization of emerging electronic technologies. This specifically holds for reconfigurable field‐effect transistors, capable of dynamically altering the operation mode between n‐ or p‐type even during run‐time. Targeting the enhancement of fabrication reproducibility and electrical balancing between operation modes, here a nanoscale Al‐Si‐Al nanowire heterostructure with single elementary, monocrystalline Al leads and sharp Schottky junctions is implemented. Utilizing a three top‐gate architecture, reconfiguration on transistor level is enabled. Having devised symmetric on‐currents as well as threshold voltages for n‐ and p‐type operation as a necessary requirement to exploit complementary reconfigurable circuits, selected implementations of logic gates such as inverters and combinational wired‐AND gates are reported. In this respect, exploiting the advantages of the proposed multi‐gate transistor architecture and offering additional logical inputs, the device functionality can be expanded by transforming a single transistor into a logic gate. Importantly, the demonstrated Al‐Si material system and thereof shown logic gates show high compatibility with state‐of‐the‐art complementary metal‐oxide semiconductor technology. Additionally, exploiting reconfiguration at the device level, this platform may pave the way for future adaptive computing systems with low‐power consumption and reduced footprint, enabling novel circuit paradigms.
more »
« less
Nanoscale Reconfigurable Si Transistors: From Wires to Sheets and Unto Multi‐Wire Channels
Abstract In this work, bottom‐up Al–Si–Al nanowire (NW) heterostructures are presented, which act as a prototype vehicle toward top‐down fabricated nanosheet (NS) and multi‐wire (MW) reconfigurable field‐effect transistors (RFETs). Evaluating the key parameters of these transistors regarding the on‐ and off‐currents as well as threshold voltages for n‐ and p‐type operation exhibit a high degree of symmetry. Most notably also a low device‐to‐device variability is achieved. In this respect, the investigated Al–Si material system reveals its relevance for reconfigurable logic cells obtained from Si NSs. To show the versatility of the proposed devices, this work reports on a combinational wired‐AND gate obtained from a multi‐gate RFET. Additionally, up‐scaling the current is achieved by realizing a MW RFET without compromising reconfigurability. The Al–Si–Al platform has substantial potential to enable complex adaptive and self‐learning combinational and sequential circuits with energy efficient and small footprint computing paradigms as well as for native components for hardware security circuits.
more »
« less
- Award ID(s):
- 2121643
- PAR ID:
- 10479005
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we report high performance GaN-on-Si Metal Insulator Semiconductor High Electron Mobility Transistors using TiAlOand HfZrO as the gate dielectric. We take the advantages of the high dielectric constant TiO2 and high bandgap Al2O3, achieving a low gate leakage current and simultaneously an excellent gate control capability. Ti and Al composition effect on the DC performance is investigated. A HfZrO gate dielectric is also utilized as a reference. fT/fmax of 150/206GHz and 150/250GHz were respectively achieved on TiAlO and HfZrO GaN-on-Si MISHEMTs. Device power performance is also evaluated.more » « less
-
In this work, we report high performance GaN-on-Si Metal Insulator Semiconductor High Electron Mobility Transistors using TiAlOand HfZrO as the gate dielectric. We took the advantages of the high dielectric constant TiO2 and high bandgap Al2O3, achieving a low gate leakage current and simultaneously an excellent gate control capability. Ti and Al composition effect on the DC performance is investigated. A HfZrO gate dielectric is also utilized as a reference. fT/fmax of 150/206GHz and 150/250GHz were respectively achieved on TiAlO and HfZrO GaN-on-Si MISHEMTs. Device power performance is also evaluated.more » « less
-
Abstract 2D layered semiconductors have attracted considerable attention for beyond‐Si complementary metal‐oxide‐semiconductor (CMOS) technologies. They can be prepared into ultrathin channel materials toward ultrascaled device architectures, including double‐gate field‐effect‐transistors (DGFETs). This work presents an experimental analysis of DGFETs constructed from chemical vapor deposition (CVD)‐grown monolayer (1L) molybdenum disulfide (MoS2) with atomic layer deposition (ALD) of hafnium oxide (HfO2) high‐k gate dielectrics (top and bottom). This extends beyond previous studies of DGFETs based mostly on exfoliated (few‐nm thick) MoS2flakes, and advances toward large‐area wafer‐scale processing. Here, significant improvements in performance are obtained with DGFETs (i.e., improvements in ON/OFF ratio, ON‐state current, sub‐threshold swing, etc.) compared to single top‐gate FETs. In addition to multi‐gate device architectures (e.g., DGFETs), the scaling of the equivalent oxide thickness (EOT) is crucial toward improved electrostatics required for next‐generation transistors. However, the impact of EOT scaling on the characteristics of CVD‐grown MoS2DGFETs remains largely unexplored. Thus, this work studies the impact of EOT scaling on subthreshold swing (SS) and gate hysteresis using current–voltage (I–V) measurements with varying sweep rates. The experimental analysis and results elucidate the basic mechanisms responsible for improvements in CVD‐grown 1L‐MoS2DGFETs compared to standard top‐gate FETs.more » « less
-
Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits.more » « less