skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complementing model species with model clades
Abstract Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a “model clade”. These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building global networks to support future studies in the model order Brassicales.  more » « less
Award ID(s):
1923589 2239530 2025224
PAR ID:
10479189
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
OXFORD
Date Published:
Journal Name:
The Plant Cell
ISSN:
1040-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage laboratory and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, and molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability. 
    more » « less
  2. Abstract Arabidopsis thaliana (hereafter Arabidopsis) is a small plant with a fast generation time and a well-annotated genome, which makes it ideal for research labs. It is arguably the most used model species in basic plant sciences. Over the past half century, studies in Arabidopsis have generated enormous insight into fundamental principles of plant life, ranging from mechanistic molecular biology to the complexities of interacting ecosystems. Based on research in Arabidopsis, we now understand that while basic cellular metabolism is generally conserved across species, variation in specialized metabolite enzymes gives rise to complex bouquets of chemical weapons that are tightly interwoven with the environment. Understanding how these are produced, regulated, and—especially—how they are deployed remains a key research area for plant immunity. The breadth of work in Arabidopsis provides a unique window into this complicated aspect of life as a plant. We are happy to have an opportunity to share our common interest in these aspects in this review. Due to space constraints, we focus on compounds produced by Arabidopsis with demonstrated antimicrobial properties. We hope that this focus (despite our eagerness to write more) will inspire new avenues of research that will contribute to a more complete understanding of immunity. 
    more » « less
  3. null (Ed.)
    Abstract Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments. 
    more » « less
  4. Abstract Severe cold, defined as a damaging cold beyond acclimation temperatures, has unique responses, but the signaling and evolution of these responses are not well understood. Production of oligogalactolipids, which is triggered by cytosolic acidification in Arabidopsis (Arabidopsis thaliana), contributes to survival in severe cold. Here, we investigated oligogalactolipid production in species from bryophytes to angiosperms. Production of oligogalactolipids differed within each clade, suggesting multiple evolutionary origins of severe cold tolerance. We also observed greater oligogalactolipid production in control samples than in temperature-challenged samples of some species. Further examination of representative species revealed a tight association between temperature, damage, and oligogalactolipid production that scaled with the cold tolerance of each species. Based on oligogalactolipid production and transcript changes, multiple angiosperm species share a signal of oligogalactolipid production initially described in Arabidopsis, namely cytosolic acidification. Together, these data suggest that oligogalactolipid production is a severe cold response that originated from an ancestral damage response that remains in many land plant lineages and that cytosolic acidification may be a common signaling mechanism for its activation. 
    more » « less
  5. ABSTRACT This beginner's guide is intended for plant biologists new to network analysis. Here, we introduce key concepts and resources for researchers interested in incorporating network analysis into research, either as a stand‐alone component for generating hypotheses or as a framework for examining and visualizing experimental results. Network analysis provides a powerful tool to predict gene functions. Advances in and reduced costs for systems biology techniques, such as genomics, transcriptomics, and proteomics, have generated abundant omics data for plants; however, the functional annotation of plant genes lags. Therefore, predictions from network analysis can be a starting point to annotate genes and ultimately elucidate genotype–phenotype relationships. In this paper, we introduce networks and compare network‐building resources available for plant biologists, including databases and software for network analysis. We then compare four databases available for plant biologists in more detail: AraNet, GeneMANIA, ATTED‐II, and STRING. AraNet and GeneMANIA are functional association networks, ATTED‐II is a gene coexpression database, and STRING is a protein–protein interaction database. AraNet and ATTED‐II are plant‐specific databases that can analyze multiple plant species, whereas GeneMANIA builds networks forArabidopsis thalianaand nonplant species and STRING for multiple species. Finally, we compare the performance of the four databases in predicting known and probable gene functions of theA. thalianaNuclear Factor‐Y (NF‐Y) genes. We conclude that plant biologists have an invaluable resource in these databases and discuss how users can decide which type of database to use depending on their research question. 
    more » « less