Precision Agriculture (PA) manages field heterogeneities and enables informed site-specific management. While PA helps improve farming efficiency and profitability, challenges prior to and following PA adoption can prevent many farmers from widely using it. This paper aims to understand producers’ challenge perceptions using 1119 survey responses from U.S. Midwest farmers. The majority (59%) of respondents have adopted at least one PA technology, while the minority (14%) had not adopted any PA technologies. Cost (equipment and service fee), brand compatibility, and data privacy concerns topped other concerns from the average producer’s point of view. Among all producers, 60% regarded PA equipment and service fee as too high, followed by 50% who viewed brand compatibility and data privacy as their major concerns. Producers at more advanced adoption stage indicated reduced concerns in most categories. Yet, there were similar concerns towards data privacy issue regardless of the adoption status. Furthermore, brand compatibility issue is more of a concern for adopters than for non-adopters. Estimation results from partial proportional odds (PPO) models show that factors that frequently affect producers’ perceived challenges include adoption status, cropland acres, age, education, information sources, farming goals, soil characteristics, and region variables. Findings from this study can aid PA stakeholders in identifying target groups, tailoring future development, research, and outreach efforts, and ultimately promoting efficient PA usage on a broader scale.
more »
« less
Understanding farmer views of precision agriculture profitability in the U.S. Midwest
Precision Agriculture (PA) technologies are well known to be useful in addressing field heterogeneities and enabling informed site-specific management decisions. While profitability is the foremost factor considered by farmers when making PA adoption decisions, information in this regard is lacking from the farmers' perspective. This paper analyzed 1119 farmer responses from a 2021 survey conducted in four states along the western margins of the U.S. Midwest. Our findings show that while most (around 60%) non-adopters indicate that they are unaware of PA profit change, adopters are likely to rate a major profit increase. About two thirds of adopters rated at least a 5% increase in profitability towards variable rate (VR) fertilizer application (72%), VR seed application (68%), and automatic section control (66%). We modeled farmers' profit change subsequent to PA adoptions. Our regression results demonstrate that the profits from PA usage increase over time and that use of conservation practices likely influences PA profitability in a positive way. As soil quality and weather factors also affect profit ratings, it would be beneficial to compare and demonstrate profitability potential of various PA technologies on a regional basis and tailor the promotion efforts to farmers most likely to benefit from them.
more »
« less
- Award ID(s):
- 2119753
- PAR ID:
- 10479190
- Publisher / Repository:
- Ecological Economics
- Date Published:
- Journal Name:
- Ecological Economics
- Volume:
- 213
- Issue:
- C
- ISSN:
- 0921-8009
- Page Range / eLocation ID:
- 107950
- Subject(s) / Keyword(s):
- AdoptionConservation practicesFarm surveyProfit changePrecision agricultureSoil quality
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Precision agriculture (PA) has been defined as a “management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production.” This definition suggests that because PA should simultaneously increase food production and reduce the environmental footprint, the barriers to adoption of PA should be explored. These barriers include (1) the financial constraints associated with adopting decision support system (DSS); (2) the hesitancy of farmers to change from their trusted advisor to a computer program that often behaves as a black box; (3) questions about data ownership and privacy; and (4) the lack of a trained workforce to provide the necessary training to implement DSSs on individual farms. This paper also discusses the lessons learned from successful and unsuccessful efforts to implement DSSs, the importance of communication with end users during DSS development, and potential career opportunities that DSSs are creating in PA.more » « less
-
Abstract Artificial intelligence (AI) represents technologies with human‐like cognitive abilities to learn, perform, and make decisions. AI in precision agriculture (PA) enables farmers and farm managers to deploy highly targeted and precise farming practices based on site‐specific agroclimatic field measurements. The foundational and applied development of AI has matured considerably over the last 30 years. The time is now right to engage seriously with the ethics and responsible practice of AI for the well‐being of farmers and farm managers. In this paper, we identify and discuss both challenges and opportunities for improving farmers’ trust in those providing AI solutions for PA. We highlight that farmers’ trust can be moderated by how the benefits and risks of AI are perceived, shared, and distributed. We propose four recommendations for improving farmers’ trust. First, AI developers should improve model transparency and explainability. Second, clear responsibility and accountability should be assigned to AI decisions. Third, concerns about the fairness of AI need to be overcome to improve human‐machine partnerships in agriculture. Finally, regulation and voluntary compliance of data ownership, privacy, and security are needed, if AI systems are to become accepted and used by farmers.more » « less
-
Abstract In agriculture, important unanswered questions about machine learning and artificial intelligence (ML/AI) include will ML/AI change how food is produced and will ML algorithms replace or partially replace farmers in the decision process. As ML/AI technologies become more accurate, they have the potential to improve profitability while reducing the impact of agriculture on the environment. However, despite these benefits, there are many adoption barriers including cost, and that farmers may be reluctant to adopt a decision tool they do not understand. The goal of this special issue is to discuss cutting‐edge research on the use of ML/AI technologies in agriculture, barriers to the adoption of these technologies, and how technologies can affect our current workforce. The papers are separated into three sections: Machine Learning within Crops, Pasture, and Irrigation; Machine Learning in Predicting Crop Disease; and Society and Policy of Machine Learning.more » « less
-
CONTEXT Sub-Saharan Africa (SSA) has the climatic and biophysical potential to grow the crops it needs to meet rapidly growing food demand; however, agricultural productivity remains low. While potential maize yields in Zambia are 9 t per hectare (t/ha), the average farmer produces only 1–2. OBJECTIVE We evaluate the contribution of responses to weather risk to that gap by decomposing the yield gap in maize in Zambia. While we know that improved seed and fertilizer can expand yield and profit, they may also increase the variance of yield under different weather outcomes, reducing their adoption. METHODS We use a novel approach combining crop modeling and statistical analysis of survey data to obtain the yield gap components in Zambia driven by input cost and input risk. We use a crop model to simulate district-level marginal effects of fertilizer and seed maturity choice on the mean and variance of expected yield and profit under all-weather outcomes for each district for the past 30 years. We compare input levels that maximize expected yield to those that maximize expected profit and maximize the expected mean-variance trade-off assuming risk-aversion. To determine how much farmers' input choices are made to reduce risk, we then quantify differences in the expected riskiness of inputs by district. RESULTS AND CONCLUSIONS We find approximately one-quarter of the yield gap can be explained by risk-reducing behavior, albeit with a substantial geographic variation. Given this finding, under present conditions, we expect that the average maximum yield that farmers can obtain without increasing risk is 6.75 t/ha compared to a potential profit-maximizing level of 8.84 t/ha. SIGNIFICANCE The risk-related yield gap is only expected to increase with weather extremes driven by climate change. Promoting “one-size-fits all” solutions to closing the yield gap could underestimate the effect of risk mitigation on agricultural production while increasing farmers' risk exposure.more » « less
An official website of the United States government

