skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tidal Evolution of the Earth–Moon System with a High Initial Obliquity
Abstract A giant-impact origin for the Moon is generally accepted, but many aspects of lunar formation remain poorly understood and debated. Ćuk et al. proposed that an impact that left the Earth–Moon system with high obliquity and angular momentum could explain the Moon’s orbital inclination and isotopic similarity to Earth. In this scenario, instability during the Laplace Plane transition, when the Moon’s orbit transitions from the gravitational influence of Earth’s figure to that of the Sun, would both lower the system’s angular momentum to its present-day value and generate the Moon’s orbital inclination. Recently, Tian & Wisdom discovered new dynamical constraints on the Laplace Plane transition and concluded that the Earth–Moon system could not have evolved from an initial state with high obliquity. Here we demonstrate that the Earth–Moon system with an initially high obliquity can evolve into the present state, and we identify a spin–orbit secular resonance as a key dynamical mechanism in the later stages of the Laplace Plane transition. Some of the simulations by Tian & Wisdom did not encounter this late secular resonance, as their model suppressed obliquity tides and the resulting inclination damping. Our results demonstrate that a giant impact that left Earth with high angular momentum and high obliquity (θ> 61°) is a promising scenario for explaining many properties of the Earth–Moon system, including its angular momentum and obliquity, the geochemistry of Earth and the Moon, and the lunar inclination.  more » « less
Award ID(s):
1947614
PAR ID:
10484861
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
2
Issue:
4
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 147
Size(s):
Article No. 147
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Having a massive moon has been considered as a primary mechanism for stabilized planetary obliquity, an example of which being our Earth. This is, however, not always consistent with the exoplanetary cases. This article details the discovery of an alternative mechanism, namely that planets orbiting around binary stars tend to have low spin-axis variations. This is because the large quadrupole potential of the stellar binary could speed up the planetary orbital precession, and detune the system out of secular spin-orbit resonances. Consequently, habitable zone planets around the stellar binaries in low inclination orbits hold higher potential for regular seasonal changes comparing to their single star analogues. 
    more » « less
  2. Abstract An Earth-analog orbiting within the habitable zone of α Centauri B was shown to undergo large variations in its obliquity, or axial tilt, which affects the planetary climate by altering the radiative flux for a given latitude. We examine the potential implications of these obliquity variations for climate through Milankovitch cycles using an energy balance model with ice growth and retreat. Similar to previous studies, the largest amplitude obliquity variations from spin-orbit resonances induce snowball states within the habitable zone, while moderate variations can allow for persistent ice caps or an ice belt. Particular outcomes for the global ice distribution can depend on the planetary orbit, obliquity, spin precession, binary orbit, and which star the Earth-analog orbits. An Earth-analog with an inclined orbit relative to the binary orbital plane can periodically transition through several global ice distribution states and risk runaway glaciation when ice appears at both poles and the equator. When determining the potential habitability for planets in general stellar binaries, more care must be taken due to the orbital and spin dynamics. For Earth-analogs within the habitable zone of α Centauri B can experience a much greater range of climate states, which is in contrast to Earth-analogs in the habitable zone of α Centauri A. 
    more » « less
  3. Abstract The dynamical evolution of the solar system is chaotic with a Lyapunov time of only ∼5 Myr for the inner planets. Due to the chaos it is fundamentally impossible to accurately predict the solar system’s orbital evolution beyond ∼50 Myr based on present astronomical observations. We have recently developed a method to overcome the problem by using the geologic record to constrain astronomical solutions in the past. Our resulting optimal astronomical solution (called ZB18a) shows exceptional agreement with the geologic record to ∼58 Ma (Myr ago) and a characteristic resonance transition around 50 Ma. Here we show that ZB18a and integration of Earth’s and Mars’ spin vector based on ZB18a yield reduced variations in Earth’s and Mars’ orbital inclination and Earth’s obliquity (axial tilt) from ∼58 to ∼48 Ma—the latter being consistent with paleoclimate records. The changes in the obliquities have important implications for the climate histories of Earth and Mars. We provide a detailed analysis of solar system frequencies (gandsmodes) and show that the shifts in the variation in Earth’s and Mars’ orbital inclination and obliquity around 48 Ma are associated with the resonance transition and caused by changes in the contributions to the superposition ofsmodes, plusg–smode interactions in the inner solar system. Theg–smode interactions and the resonance transition (consistent with geologic data) are unequivocal manifestations of chaos. Dynamical chaos in the solar system hence not only affects its orbital properties but also the long-term evolution of planetary climate through eccentricity and the link between inclination and axial tilt. 
    more » « less
  4. ABSTRACT The orbits of some warm Jupiters are highly inclined (20°–50°) to those of their exterior companions. Comparable misalignments are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet–planet and planet–disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance, and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g. in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in apsidally-orthogonal warm Jupiter systems (e.g. HD 147018). 
    more » « less
  5. Moonforming impact. During this period, the lunar magma ocean (LMO) lost most of its heat through early vigorous convection, crystallizing and forming an initial cumulate stratigraphy through, potentially, robust equilibrium crystallization followed by fractional crystallization once the LMO became sufficiently viscous. This rheological transition is estimated to have occurred at 50 % to 60 % LMO solidification, and although the petrological effects of the regime switch have been frequently investigated at the lower value, such effects at the upper limit have not been formally examined until now. Given this scenario, we present two new internally consistent, high-resolution models that simulate the solidification of a deep LMO of Earth-like bulk silicate composition at both rheological transition values, focusing on the petrological characteristics of the evolving mantle and crust. The results suggest that increasing the volume of early suspended solids from the oft-examined 50 % to 60 % may lead to non-trivial differences. The appearance of minor mantle garnet without the need to invoke a refractory-element enriched bulk silicate Moon composition, a bulk mantle relatively richer in orthopyroxene than olivine, a lower density upper mantle, and a thinner crust are shown to change systematically between the two models, favoring prolonged early crystal suspension. In addition, we show that late-stage, silica-enriched melts may not have sufficient density to permit plagioclase to continue building a floatation crust and that plagioclase likely sinks or stagnates. As the ability of a lunar magma ocean to suspend crystals is directly tied to the Moon’s early thermal state, the degree of early LMO convection – and the immediate Solar System environment that drives it – require as much consideration in LMO models as more well-investigated parameters such as bulk silicate Moon composition and initial magma ocean depth. 
    more » « less