Climate models predict more frequent, prolonged, and extreme droughts in the future. Therefore, drought experiments varying in amount and duration across a range of biogeographical scenarios provide a powerful tool for estimating how drought will affect future ecosystems. Past experimental work has been focused on the manipulation of meteorological drought: Rainout shelters are used to reduce precipitation inputs into the soil. This work has been instrumental in our ability to predict the expected effects of altered rainfall. But what about the nonrainfall components of drought? We review recent literature on the co-occurring and sometimes divergent impacts of atmospheric drying and meteorological drying. We discuss how manipulating meteorological drought or rainfall alone may not predict future changes in plant productivity, composition, or species interactions that result from climate change induced droughts. We make recommendations for how to improve these experiments using manipulations of relative humidity.
more » « less- PAR ID:
- 10479324
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- BioScience
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 0006-3568
- Format(s):
- Medium: X Size: p. 65-71
- Size(s):
- p. 65-71
- Sponsoring Org:
- National Science Foundation
More Like this
-
Drought is a prominent feature of Hawaiʻi’s climate. However, it has been over 30 years since the last comprehensive meteorological drought analysis, and recent drying trends have emphasized the need to better understand drought dynamics and multi-sector effects in Hawaiʻi. Here, we provide a comprehensive synthesis of past drought effects in Hawaiʻi that we integrate with geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought. Results show that drought duration and magnitude have increased significantly, consistent with trends found in other Pacific Islands. We found that most droughts were associated with El Niño events, and the two worst droughts of the past century were multi-year events occurring in 1998–2002 and 2007–2014. The former event was most severe on the islands of O’ahu and Kaua’i while the latter event was most severe on Hawaiʻi Island. Within islands, we found different spatial patterns depending on leeward versus windward contrasts. Droughts have resulted in over $80 million in agricultural relief since 1996 and have increased wildfire risk, especially during El Niño years. In addition to providing the historical context needed to better understand future drought projections and to develop effective policies and management strategies to protect natural, cultural, hydrological, and agricultural resources, this work provides a framework for conducting drought analyses in other tropical island systems, especially those with a complex topography and strong climatic gradients.more » « less
-
Abstract Societies in much of the Horn of Africa are affected by variability in two distinct rainy seasons: the March–May (MAM) “long” rains and the October–December (OND) “short” rains. A recent five-season, La Niña–forced drought has renewed concerns about possible anthropogenic drying trends in the long rains, which had partially recovered after a multidecadal drying trend in the 1980s through the 2000s. Despite observed drying, previous generations of global climate models (GCMs) have consistently projected long-term wetting due to increased greenhouse gas concentrations, an East African “paradox” which complicates the interpretation of East African rainfall projections. We investigate the paradox in new phase 6 of the Coupled Model Intercomparison Project (CMIP6) and seasonal forecast models, leveraging an improved observational record and large ensembles to better differentiate internal and forced trends. We find observed drying trends are at the limits of the GCM spread during the peak paradox period, though the recent recovery is comfortably within the model spread. We find that the apparent paradox is largely removed by prescribing sea surface temperatures (SSTs) and is likely caused by the GCM difficulties in simulating observed tropical Pacific SST trends in recent decades. In line with arguments that these SST trends are at least partially forced anthropogenically, we recommend users of future rainfall projections in East Africa consider the possibility of long-term MAM drying despite GCM wetting and call for future model simulations that better sample the expected spread of SSTs.
Significance Statement Societies in the Horn of Africa depend on the March–May “long” rains and the September–December “short” rains to support agricultural and pastoral practices on rain-fed lands. Recent major droughts have raised worries about possible anthropogenically forced drying trends in the long rains through global climate models (GCMs) project wetting. This East African “paradox” complicates long-term climate adaptation planning. We find the paradox continues in the newest generation of GCMs and seasonal forecast models; though a recent recovery in rainfall is well-captured, the strongest observed drying trends are rare in simulations. The paradox likely arises from known GCM biases in the Pacific Ocean interacting with natural variability. We recommend that researchers and policymakers consider possible long-term drying despite GCM projections of wetting.
-
Abstract Tropical rainforests provide essential ecosystem services to agricultural areas, including moisture recycling. In the Amazon basin, drought frequency has increased in the late 20th and early 21st centuries, but the role of forests, ocean, and nonforested areas in causing or mitigating drought has not been determined. Using a precipitationshed moisture tracking framework, we quantify the contribution sources of evaporation to rainfall in Rondônia in the Brazilian Amazon. Forests account for ∼48% of annual rainfall on average, and more than half of the forest source is from protected areas (PAs). During droughts in 2005 and 2010, moisture supply decreased from oceans and nonforested areas, while supply from forests was stable and compensated for the decrease. Remote sensing and land surface models corroborate the relative insensitivity of forest evapotranspiration to droughts. Forests mitigate drought in the agricultural study region, providing an important ecosystem service that could be disrupted with further deforestation.
-
Abstract Our broad research goal is to understand how human societies adapt to natural hazards, such as droughts and floods, and how their social and cultural structures are shaped by these events. Here we develop meteorological data of extreme dry, wet, cold, and warm indices relative to 96 largely nonindustrial societies in the worldwide Standard Cross-Cultural Sample to explore how well the meteorological data can be used to hindcast ethnographically reported drought and flood events and the global patterns of extremes. We find that the drought indices that are best at hindcasting ethnographically reported droughts [precipitation minus evaporation (P − E) measures] also tend to overpredict the number of droughts, and therefore we propose a combination of these two indices plus the PDSI as an optimal approach. Some wet precipitation indices (R10S and R20S) are more effective at hindcasting ethnographically reported floods than others. We also calculate the predictability of those extreme indices and use factor analysis to reduce the number of variables so as to discern global patterns. This work highlights the ability to use extreme meteorological indices to fill in gaps in ethnographic records; in the future, this may help us to determine relationships between extreme events and societal response over longer time scales than are otherwise available.
-
Abstract This study assesses the ecohydrological effects of recent meteorological droughts in tropical South America based on multiple sources of data, and investigates the possible mechanisms underlying the drought response and recovery of different ecohydrological systems. Soil drought response and recovery lag behind the meteorological drought, with delays longer in the dry region (Nordeste) than in the wet region (Amazonia), and longer in deep soil than in shallow soil. Evapotranspiration (ET) and vegetation in Nordeste are limited by water under normal conditions and decrease promptly in response to the onset of shallow soil drought. In most of the Amazon where water is normally abundant, ET and vegetation indices follow an increase-then-decrease pattern, increase at the drought onset due to increased sunshine and decrease when the drought is severe enough to cause a shift from an energy-limited regime to a water-limited regime. After the demise of meteorological droughts, ET and vegetation rapidly recover in Nordeste with the replenishment of shallow soil moisture (SM), but take longer to recover in southern Amazon due to their dependence on deep SM storage. Following severe droughts, the negative anomalies of ET and vegetation indices in southern Amazon tend to persist well beyond the end of soil drought, indicating drought-induced forest mortality that is slow to recover from. Findings from this study may have implications on the possibility of a future forest dieback as drought is projected to become more frequent and more severe in a warmer climate.more » « less