skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ISOTOPIC EVIDENCE OF SEASONALITY AND MIGRATION DURING THE LAST GLACIAL PERIOD OF KENYA
Paleoenvironmental reconstructions of the Last Glacial Period of eastern Africa paint a picture of a landscape dominated by grasslands and herds of diverse grazing herbivores unlike anywhere in modern Africa. However, the scale of such reconstructions is often at the site level and greatly time-averaged. To elucidate the impact of glacial conditions on tropical grassland animal behavior, a more direct proxy is needed. Using stable strontium, carbon, and oxygen isotopes, we reconstruct paleoenvironmental conditions and behavior of 18 bovid and equid species from four sites dating to the Last Glacial Period in Kenya (Karungu, Rusinga, Kibogo, and Lukenya Hill). In doing so, we address i) migration patterns, ii) seasonality of precipitation and diet, and iii) the role that seasonal responses played in niche separation of closely related species. We find that migration played a similar role in Last Glacial Period grasslands to what it does today but with a notably different set of species; that animals had relatively stable, grass-dominated diets year-round, peaking in C4 grass abundance during the Last Glacial Maximum; that precipitation and seasonality fell within the range of modern eastern African ecosystems; and that a diverse guild of ungulate grazers was able to coexist due to niche separation detectable as isotopic differences. These results combine to extend the theory that eastern African grasslands were greatly expanded and resource-rich year-round during the Last Glacial Period, creating highly favorable conditions for grazing ungulates. Additionally, they demonstrate the geologic recency of the modern guild of migratory species in eastern Africa, which replaced a set of now-extinct migratory species once common in grasslands during the Last Glacial Period, most notably the enigmatic bovid Rusingoryx. Our results illustrate the ecosystem dynamics of Late Pleistocene Kenya on a scale not attainable with most other paleoenvironmental proxies: the scale of individual animals’ lifetimes. This is nearly as close as possible to an actualistic ecological survey of ungulate behavior during the Last Glacial Period in a setting not analogous to any ecosystem on Earth today.  more » « less
Award ID(s):
2234426
PAR ID:
10479448
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Society of Vertebrate Paleontology
Date Published:
Format(s):
Medium: X
Location:
Cincinnati, OH
Sponsoring Org:
National Science Foundation
More Like this
  1. Reynolds, Sally (Ed.)
    For many animals, migration is an important strategy for navigating seasonal bottlenecks in resource availability. In the savannas of eastern Africa, herds of grazing animals, including blue wildebeest (Connochaetes taurinus), Thomson's gazelle (Eudorcas thomsonii), and plains zebra (Equus quagga), travel hundreds of kilometers annually tracking suitable forage and water. However, we know nearly nothing about migration among the extinct species that often dominated Late Pleistocene communities. Using serially sampled 87Sr/86Sr and δ13C, we characterize the prehistoric movement and diet of the enigmatic wildebeest Rusingoryx atopocranion from two localities (Karungu and Rusinga Island) in the Lake Victoria Basin of western Kenya. We find clear evidence for migration in all four individuals studied, with three 87Sr/86Sr series demonstrating high-amplitude fluctuations and all falling outside the modeled isoscape 87Sr/86Sr ranges of the fossil localities from which they were recovered. This suggests that R. atopocranion exhibited migratory behavior comparable to that of its closest living relatives in the genus Connochaetes. Additionally, individuals show seasonally-variable δ13C, with a higher browse intake than modern and fossil eastern African alcelaphins indicating behavioral differences among extinct taxa otherwise unrecognized by comparison with extant related species. That this species was highly migratory aligns with its morphology matching that of an open grassland migrant: it had open-adapted postcranial morphology along with a unique cranial structure convergent with lambeosaurine dinosaurs for calling long distances. We further hypothesize that its migratory behavior may be linked to its extinction, as R. atopocranion disappears from the Lake Victoria Basin fossil sequence coincident with the refilling of Lake Victoria sometime after 36 ka, potentially impeding its past migratory routes. This study characterizes migration in an extinct eastern African species for the first time and shapes our ecological understanding of this unique bovid and the ecosystems in which Middle Stone Age humans lived. 
    more » « less
  2. ABSTRACT Modern African ungulates navigate seasonal variation in resource availability through diet‐switching (primarily mixed‐feeders) and/or migrating (primarily grass grazers). These ecological generalisations are well‐documented today, but the extent to which they apply to the non‐analog ecosystems of the Pleistocene are unclear. Drawing from serially‐sampled stable isotope measurements from 18 Kenyan large herbivore species from the Last Glacial Period (LGP), we evaluate how diet, diet‐switching, and migration compare to observations from present‐day settings. We find a higher grazing signal in most LGP species and a greater magnitude of diet‐switching than in the present. Additionally, we find that the relationships between grass intake, migration, diet‐switching, and body size during the LGP were unlike those observed today. This establishes a revised paleoecology of LGP herbivore communities and highlights that LGP herbivores were behaviourally non‐analog. Our results imply that ecological observations from present‐day settings offer an incomplete perspective of herbivore‐environment interactions. 
    more » « less
  3. Waitt RB, Thackray GD (Ed.)
    Mountain glacier moraine sequences and their chronologies allow us to evaluate the timing and climate conditions that underpin changes in the equilibrium line altitudes (ELAs), which can provide valuable information on the paleoclimatology of understudied regions such as tropical East Africa. However, moraine sequences are inherently discontinuous, and the precise climate conditions that they represent can be ambiguous due to the sensitivity of mountain glaciers to temperature, precipitation, and other environmental variables. Here, we used a two-dimensional (2-D) iceflow and mass-balance model to simulate glacier extents and ELAs in the Rwenzori Mountains in East Africa over the past 31,000 yr (31 k.y.), including the Last Glacial Maximum (LGM), late glacial period, and the Holocene Epoch. We drove the glacier model with two independent, continuous temperature reconstructions to simulate possible glacier length changes through time. Model input paleoclimate values came from branched glycerol dialkyl glycerol tetraether (brGDGT) temperature reconstructions from alpine lakes on Mount Kenya for the last ~31 k.y., and precipitation reconstructions for the LGM came from various East African locations. We then compared the simulated fluctuations with the positions and ages (where known) of the Rwenzori moraines. The simulated glacier extents reached within 1.1 km of the dated LGM moraines in one valley (93% of the full LGM extent) when forced by the brGDGT temperature reconstructions (maximum cooling of 6.1 °C) and a decrease in precipitation (-10% than modern amounts). These simulations suggest that the Rwenzori glaciers required a cooling of at least 6.1 °C to reach the dated LGM moraines. Based on the model output, we predict an age of 12–11 ka for moraines located halfway between the LGM and modern glacier extents. We also predict ice-free conditions in the Rwenzori Mountains for most of the early to middle Holocene, followed by a late Holocene glacier readvance within the last 2000 yr. 
    more » « less
  4. Abstract Researchers typically rely on fossils from the Family Bovidae to generate African paleoenvironmental reconstructions due to their strict ecological tendencies. Bovids have dominated the southern African fauna for the past four million years and, therefore, dominate the fossil faunal assemblages, especially isolated teeth. Traditionally, researchers reference modern and fossil comparative collections to identify teeth. However, researchers are limited by the specific type and number of bovids at each institution. B.O.V.I.D. (Bovidae Occlusal Visual IDentification) is a repository of images of the occlusal surface of bovid teeth. The dataset currently includes extant bovids from 7 tribes and 20 species (~3900). B.O.V.I.D. contains two scaled images per specimen: a color and a black and white (binarized) image. The database is a useful reference for identifying bovid teeth. The large sample size also allows one to observe the natural variation that exists in each taxa. The binarized images can be used in statistical shape analyses, such as taxonomic classification. B.O.V.I.D. is a valuable supplement to other methods for taxonomically identifying bovid teeth. 
    more » « less
  5. Tropical mountain ecosystems hold immense ecological and economic importance, yet they face disproportionate risks from shifting tropical climates. For example, present-day montane vegetation of East Africa is characterized by different plant species that grow in and are restricted to certain elevations due to environmental tolerances. As climate changes and temperature/rainfall zones move on mountains, these species must rapidly adjust their ranges or risk extinction. Paleoenvironmental records offer valuable insights into past climate and ecosystem dynamics, aiding predictions for ongoing climate change impacts. In particular, warming and wetting in tropical East Africa during the mid-Holocene resulted in both lowland and highland forest expansion. However, the relative impacts of rainfall and temperature change on montane ecosystems along with the influence of lowland forest expansion on montane communities is not completely understood. We use fossil pollen to study the vegetation changes in two lakes at different altitudes in the Rwenzori Mountains, Uganda: Lake Mahoma (Montane Forest belt) and Upper Kachope Lake (Afroalpine belt). Further, using the newly relaunched African Pollen Database and recent temperature reconstructions, we provide a regional synthesis of vegetation changes in the Rwenzori and then compare this with changes observed from other equatorial East African montane sites (particularly Mt Kenya). In the early to mid-Holocene in the Rwenzori Mountains, trees common today in lowland forests dominated, driven largely by warmer temperatures. After 4000 years ago (4ka), Afromontane forest trees along with grasses progressively replaced lowland trees. Not all sites experienced identical transitions. For instance, at Lake Rutundu on Mt Kenya at the same elevation as Lake Mahoma, bamboo expansion preceded Afromontane forest growth, likely influenced by variations in fire. Variance partitioning indicates that each site responded differently to changes in temperature and rainfall. Therefore, these site-specific ecological responses underscore the importance of considering biogeographic legacies as management strategies are developed, despite similarities in modern ecology. 
    more » « less