skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Embedding security into ferroelectric FET array via in situ memory operation
Abstract Non-volatile memories (NVMs) have the potential to reshape next-generation memory systems because of their promising properties of near-zero leakage power consumption, high density and non-volatility. However, NVMs also face critical security threats that exploit the non-volatile property. Compared to volatile memory, the capability of retaining data even after power down makes NVM more vulnerable. Existing solutions to address the security issues of NVMs are mainly based on Advanced Encryption Standard (AES), which incurs significant performance and power overhead. In this paper, we propose a lightweight memory encryption/decryption scheme by exploiting in-situ memory operations with negligible overhead. To validate the feasibility of the encryption/decryption scheme, device-level and array-level experiments are performed using ferroelectric field effect transistor (FeFET) as an example NVM without loss of generality. Besides, a comprehensive evaluation is performed on a 128 × 128 FeFET AND-type memory array in terms of area, latency, power and throughput. Compared with the AES-based scheme, our scheme shows ~22.6×/~14.1× increase in encryption/decryption throughput with negligible power penalty. Furthermore, we evaluate the performance of our scheme over the AES-based scheme when deploying different neural network workloads. Our scheme yields significant latency reduction by 90% on average for encryption and decryption processes.  more » « less
Award ID(s):
2246149
PAR ID:
10479530
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the prosperous development of Deep Neural Network (DNNs), numerous Process-In-Memory (PIM) designs have emerged to accelerate DNN models with exceptional throughput and energy-efficiency. PIM accelerators based on Non-Volatile Memory (NVM) or volatile memory offer distinct advantages for computational efficiency and performance. NVM based PIM accelerators, demonstrated success in DNN inference, face limitations in on-device learning due to high write energy, latency, and instability. Conversely, fast volatile memories, like SRAM, offer rapid read/write operations for DNN training, but suffer from significant leakage currents and large memory footprints. In this paper, for the first time, we present a fully-digital sparse processing in hybrid NVM-SRAM design, synergistically combines the strengths of NVM and SRAM, tailored for on-device continual learning. Our designed NVM and SRAM based PIM circuit macros could support both storage and processing of N:M structured sparsity pattern, significantly improving the storage and computing efficiency. Exhaustive experiments demonstrate that our hybrid system effectively reduces area and power consumption while maintaining high accuracy, offering a scalable and versatile solution for on-device continual learning. 
    more » « less
  2. In this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent non-volatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ Advanced Encryption Standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES Energy-Delay Product (EDP) can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively. 
    more » « less
  3. Hardware Trojans in Integrated Circuits (ICs), that are inserted as hostile modifications in the design phase and/or the fabrication phase, are a security threat since the semiconductor manufacturing process is increasingly becoming globalized. These Trojans are devised to stay hidden during standard structural and functional testing procedures and only activate under pre-determined rare conditions (e.g., after a large number of clock cycles or the assertion of an improbable net). Once triggered, they can deliver malicious payloads (e.g., denial-of-service and information leakage attacks). Current literature identifies a collection of logic Trojans (both trigger circuits and payloads), but minimal research exists on memory Trojans despite their high feasibility. Emerging Non-Volatile Memories (NVMs), such as Resistive RAM (RRAM), have special properties such as non-volatility and gradual drift in bitcell resistance under a pulsing voltage input that make them prime targets to deploy hardware Trojans. In this paper, we present two delay-based and two voltage-based Trojan triggers using emerging NVM (ENTT) by utilizing RRAM’s resistance drift under a pulsing voltage input. Simulations show that ENTTs can be triggered by reading/writing to a specific memory address N times (N could be 2,500–3,500 or a different value for each ENTT design). Since the RRAM is non-volatile, address accesses can be intermittent and therefore stay undetected from system-level techniques that can identify continuous hammering as a possible security threat. We also present three reset techniques to de-activate the triggers. The resulting static/dynamic power overhead and maximum area overhead incurred by the proposed ENTTs are 104.24 μW/0.426 μW and 9.15 μm2, respectively in PTM 65 nm technology. ENTTs are effective against contemporary Trojan detection techniques and system level protocols. We also propose countermeasures to detect ENTT during the test phase and/or prevent fault-injection attacks during deployment. 
    more » « less
  4. null (Ed.)
    Hardware accelerators are essential to the accommodation of ever-increasing Deep Neural Network (DNN) workloads on the resource-constrained embedded devices. While accelerators facilitate fast and energy-efficient DNN operations, their accuracy is threatened by faults in their on-chip and off-chip memories, where millions of DNN weights are held. The use of emerging Non-Volatile Memories (NVM) further exposes DNN accelerators to a non-negligible rate of permanent defects due to immature fabrication, limited endurance, and aging. To tolerate defects in NVM-based DNN accelerators, previous work either requires extra redundancy in hardware or performs defect-aware retraining, imposing significant overhead. In comparison, this paper proposes a set of algorithms that exploit the flexibility in setting the fault-free bits in weight memory to effectively approximate weight values, so as to mitigate defect-induced accuracy drop. These algorithms can be applied as a one-step solution when loading the weights to embedded devices. They only require trivial hardware support and impose negligible run-time overhead. Experiments on popular DNN models show that the proposed techniques successfully boost inference accuracy even in the face of elevated defect rates in the weight memory. 
    more » « less
  5. Magneto-Electric FET ( MEFET ) is a recently developed post-CMOS FET, which offers intriguing characteristics for high-speed and low-power design in both logic and memory applications. In this article, we present MeF-RAM , a non-volatile cache memory design based on 2-Transistor-1-MEFET ( 2T1M ) memory bit-cell with separate read and write paths. We show that with proper co-design across MEFET device, memory cell circuit, and array architecture, MeF-RAM is a promising candidate for fast non-volatile memory ( NVM ). To evaluate its cache performance in the memory system, we, for the first time, build a device-to-architecture cross-layer evaluation framework to quantitatively analyze and benchmark the MeF-RAM design with other memory technologies, including both volatile memory (i.e., SRAM, eDRAM) and other popular non-volatile emerging memory (i.e., ReRAM, STT-MRAM, and SOT-MRAM). The experiment results for the PARSEC benchmark suite indicate that, as an L2 cache memory, MeF-RAM reduces Energy Area Latency ( EAT ) product on average by ~98% and ~70% compared with typical 6T-SRAM and 2T1R SOT-MRAM counterparts, respectively. 
    more » « less