skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tolerating Defects in Low-Power Neural Network Accelerators Via Retraining-Free Weight Approximation
Hardware accelerators are essential to the accommodation of ever-increasing Deep Neural Network (DNN) workloads on the resource-constrained embedded devices. While accelerators facilitate fast and energy-efficient DNN operations, their accuracy is threatened by faults in their on-chip and off-chip memories, where millions of DNN weights are held. The use of emerging Non-Volatile Memories (NVM) further exposes DNN accelerators to a non-negligible rate of permanent defects due to immature fabrication, limited endurance, and aging. To tolerate defects in NVM-based DNN accelerators, previous work either requires extra redundancy in hardware or performs defect-aware retraining, imposing significant overhead. In comparison, this paper proposes a set of algorithms that exploit the flexibility in setting the fault-free bits in weight memory to effectively approximate weight values, so as to mitigate defect-induced accuracy drop. These algorithms can be applied as a one-step solution when loading the weights to embedded devices. They only require trivial hardware support and impose negligible run-time overhead. Experiments on popular DNN models show that the proposed techniques successfully boost inference accuracy even in the face of elevated defect rates in the weight memory.  more » « less
Award ID(s):
2011236 1909854
PAR ID:
10296238
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
20
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    PIM (processing-in-memory) based hardware accelerators have shown great potentials in addressing the computation and memory access intensity of modern CNNs (convolutional neural networks). While adopting NVM (non-volatile memory) helps to further mitigate the storage and energy consumption overhead, adopting quantization, e.g., shift-based quantization, helps to tradeoff the computation overhead and the accuracy loss, integrating both NVM and quantization in hardware accelerators leads to sub-optimal acceleration. In this paper, we exploit the natural shift property of DWM (domain wall memory) to devise DWMAcc, a DWM-based accelerator with asymmetrical storage of weight and input data, to speed up the inference phase of shift-based CNNs. DWMAcc supports flexible shift operations to enable fast processing with low performance and area overhead. We then optimize it with zero-sharing , input-reuse , and weight-share schemes. Our experimental results show that, on average, DWMAcc achieves 16.6× performance improvement and 85.6× energy consumption reduction over a state-of-the-art SRAM based design. 
    more » « less
  2. With the prosperous development of Deep Neural Network (DNNs), numerous Process-In-Memory (PIM) designs have emerged to accelerate DNN models with exceptional throughput and energy-efficiency. PIM accelerators based on Non-Volatile Memory (NVM) or volatile memory offer distinct advantages for computational efficiency and performance. NVM based PIM accelerators, demonstrated success in DNN inference, face limitations in on-device learning due to high write energy, latency, and instability. Conversely, fast volatile memories, like SRAM, offer rapid read/write operations for DNN training, but suffer from significant leakage currents and large memory footprints. In this paper, for the first time, we present a fully-digital sparse processing in hybrid NVM-SRAM design, synergistically combines the strengths of NVM and SRAM, tailored for on-device continual learning. Our designed NVM and SRAM based PIM circuit macros could support both storage and processing of N:M structured sparsity pattern, significantly improving the storage and computing efficiency. Exhaustive experiments demonstrate that our hybrid system effectively reduces area and power consumption while maintaining high accuracy, offering a scalable and versatile solution for on-device continual learning. 
    more » « less
  3. Advances in machine intelligence have sparked interest in hardware accelerators to implement these algorithms, yet embedded electronics have stringent power, area budgets, and speed requirements that may limit nonvolatile memory (NVM) integration. In this context, the development of fast nanomagnetic neural networks using minimal training data is attractive. Here, we extend an inference-only proposal using the intrinsic physics of domain-wall MTJ (DW-MTJ) neurons for online learning to implement fully unsupervised pattern recognition operation, using winner-take-all networks that contain either random or plastic synapses (weights). Meanwhile, a read-out layer trains in a supervised fashion. We find our proposed design can approach state-of-the-art success on the task relative to competing memristive neural network proposals, while eliminating much of the area and energy overhead that would typically be required to build the neuronal layers with CMOS devices. 
    more » « less
  4. Emerging resistive random-access memory (ReRAM) has recently been intensively investigated to accelerate the processing of deep neural networks (DNNs). Due to the in-situ computation capability, analog ReRAM crossbars yield significant throughput improvement and energy reduction compared to traditional digital methods. However, the power hungry analog-to-digital converters (ADCs) prevent the practical deployment of ReRAM-based DNN accelerators on end devices with limited chip area and power budget. We observe that due to the limited bitdensity of ReRAM cells, DNN weights are bit sliced and correspondingly stored on multiple ReRAM bitlines. The accumulated current on bitlines resulted by weights directly dictates the overhead of ADCs. As such, bitwise weight sparsity rather than the sparsity of the full weight, is desirable for efficient ReRAM deployment. In this work, we propose bit-slice `1, the first algorithm to induce bit-slice sparsity during the training of dynamic fixed-point DNNs. Experiment results show that our approach achieves 2 sparsity improvement compared to previous algorithms. The resulting sparsity allows the ADC resolution to be reduced to 1-bit of the most significant bit-slice and down to 3-bit for the others bits, which significantly speeds up processing and reduces power and area overhead. 
    more » « less
  5. Sparse deep neural networks (DNNs) have the potential to deliver compelling performance and energy efficiency without significant accuracy loss. However, their benefits can quickly diminish if their training is oblivious to the target hardware. For example, fewer critical connections can have a significant overhead if they translate into long-distance communication on the target hardware. Therefore, hardware-aware sparse training is needed to leverage the full potential of sparse DNNs. To this end, we propose a novel and comprehensive communication-aware sparse DNN optimization framework for tile-based in-memory computing (IMC) architectures. The proposed technique, CANNON first maps the DNN layers onto the tiles of the target architecture. Then, it replaces the fully connected and convolutional layers with communication-aware sparse connections. After that, CANNON optimizes the communication cost with minimal impact on the DNN accuracy. Extensive experimental evaluations with a wide range of DNNs and datasets show up to 3.0× lower communication energy, 3.1× lower communication latency, and 6.8× lower energy-delay product compared to state-of-the-art pruning approaches with a negligible impact on the classification accuracy on IMC-based machine learning accelerators. 
    more » « less