skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Amplitude-dependent edge states and discrete breathers in nonlinear modulated phononic lattices
Abstract We investigate the spectral properties of one-dimensional spatially modulated nonlinear phononic lattices, and their evolution as a function of amplitude. In the linear regime, the stiffness modulations define a family of periodic and quasiperiodic lattices whose bandgaps host topological edge states localized at the boundaries of finite domains. With cubic nonlinearities, we show that edge states whose eigenvalue branch remains within the gap as amplitude increases remain localized, and therefore appear to be robust with respect to amplitude. In contrast, edge states whose corresponding branch approaches the bulk bands experience de-localization transitions. These transitions are predicted through continuation studies on the linear eigenmodes as a function of amplitude, and are confirmed by direct time domain simulations on finite lattices. Through our predictions, we also observe a series of amplitude-induced localization transitions as the bulk modes detach from the nonlinear bulk bands and become discrete breathers that are localized in one or more regions of the domain. Remarkably, the predicted transitions are independent of the size of the finite lattice, and exist for both periodic and quasiperiodic lattices. These results highlight the co-existence of topological edge states and discrete breathers in nonlinear modulated lattices. Their interplay may be exploited for amplitude-induced eigenstate transitions, for the assessment of the robustness of localized states, and as a strategy to induce discrete breathers through amplitude tuning.  more » « less
Award ID(s):
1741685
PAR ID:
10479888
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
New Journal of Physics
Volume:
25
Issue:
10
ISSN:
1367-2630
Page Range / eLocation ID:
103053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove the existence of a class of time-localized and space-periodic breathers (called q-gap breathers) in nonlinear lattices with time-periodic coe!cients. These q-gap breathers are the counterparts to the classical space-localized and time-periodic breathers found in space-periodic systems. Using normal form transformations, we establish rigorously the existence of such solutions with oscillating tails (in the time domain) that can be made arbitrarily small but finite. Due to the presence of the oscillating tails, these solutions are coined generalized q-gap breathers. Using a multiple-scale analysis, we also derive a tractable amplitude equation that describes the dynamics of breathers in the limit of small amplitude. In the presence of damping, we demonstrate the existence of transition fronts that connect the trivial state to the time-periodic ones. The analytical results are corroborated by systematic numerical simulations. 
    more » « less
  2. Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution’s energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile. 
    more » « less
  3. In this article we prove the existence of a new family of periodic solutions for discrete, nonlinear Schrödinger equations subject to spatially localized driving and damping. They provide an alternate description of the metastable behavior in such lattice systems which agrees with previous predictions for the evolution of metastable states while providing more accurate approximations to these states. We analyze the stability of these breathers, finding a very small positive eigenvalue whose eigenvector lies almost tangent to the surface of the cylinder formed by the family of breathers. This causes solutions to slide along the cylinder without leaving its neighborhood for very long times. 
    more » « less
  4. Abstract Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasi-periodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps. 
    more » « less
  5. Periodic networks on the verge of mechanical instability, called Maxwell lattices, are known to exhibit zero-frequency modes localized to their boundaries. Topologically polarized Maxwell lattices, in particular, focus these zero modes to one of their boundaries in a manner that is protected against disorder by the reciprocal-space topology of the lattice’s band structure. Here, we introduce a class of mechanical bilayers as a model system for designing topologically protected edge modes that couple in-plane dilational and shearing modes to out-of-plane flexural modes, a paradigm that we refer to as “omnimodal polarization.” While these structures exhibit a high-dimensional design space that makes it difficult to predict the topological polarization of generic geometries, we are able to identify a family of mirror-symmetric bilayers that inherit the in-plane modal localization of their constitutive monolayers, whose topological polarization can be determined analytically. Importantly, the coupling between the layers results in the emergence of omnimodal polarization, whereby in-plane and out-of-plane edge modes localize on the same edge. We demonstrate these theoretical results by fabricating a mirror-symmetric, topologically polarized kagome bilayer consisting of a network of elastic beams via additive manufacturing and confirm this finite-frequency polarization via finite element analysis and laser-vibrometry experiments. 
    more » « less