Abstract Rare‐earth iron garnets have distinctive spin‐wave (SW) properties such as low magnetic damping and long SW coherence length making them ideal candidates for magnonics. Among them, thulium iron garnet (TmIG) is a ferrimagnetic insulator with unique magnetic properties including perpendicular magnetic anisotropy (PMA) and topological hall effect at room temperature when grown down to a few nanometers, extending its application to magnon spintronics. Here, the SW propagation properties of TmIG films (thickness of 7–34 nm) grown on GGG and sGGG substrates are studied at room temperature. Magnetic measurements show in‐plane magnetic anisotropy for TmIG films grown on GGG and out‐of‐plane magnetic anisotropy for films grown on sGGG substrates with PMA. SW electrical transmission spectroscopy measurements on TmIG/GGG films unveil magnetostatic surface spin waves (MSSWs) propagating up to 80 µm with a SW group velocity of 2–8 km s−1. Intriguingly, these MSSWs exhibit nonreciprocal propagation, opening new applications in SW functional devices. TmIG films grown on sGGG substrates exhibit forward volume spin waves with a reciprocal propagation behavior up to 32 µm.
more »
« less
Mapping of Spin‐Wave Transport in Thulium Iron Garnet Thin Films Using Diamond Quantum Microscopy
Abstract Spin waves, collective dynamic magnetic excitations, offer crucial insights into magnetic material properties. Rare‐earth iron garnets offer an ideal spin‐wave (SW) platform with long propagation length, short wavelength, gigahertz frequency, and applicability to magnon spintronic platforms. Of particular interest, thulium iron garnet (TmIG) has attracted huge interest recently due to its successful growth down to a few nanometers, observed topological Hall effect, and spin‐orbit torque‐induced switching effects. However, there is no direct spatial measurement of its SW properties. This work uses diamond nitrogen‐vacancy (NV) magnetometry in combination with SW electrical transmission spectroscopy to study SW transport properties in TmIG thin films. NV magnetometry allows probing spin waves at the sub‐micrometer scale, seen by the amplification of the local microwave magnetic field due to the coupling of NV spin qubits with the stray magnetic field produced by the microwave‐excited spin waves. By monitoring the NV spin resonances, the SW properties in TmIG thin films are measured as a function of the applied magnetic field, including their amplitude, decay length (≈50 µm), and wavelength (0.8–2 µm). These results pave the way for studying spin qubit‐magnon interactions in rare‐earth magnetic insulators, relevant to quantum magnonics applications.
more »
« less
- PAR ID:
- 10480014
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonreciprocal magnon propagation has recently become a highly potential approach of developing chip-embedded microwave isolators for advanced information processing. However, it is challenging to achieve large nonreciprocity in miniaturized magnetic thin-film devices because of the difficulty of distinguishing propagating surface spin waves along the opposite directions when the film thickness is small. In this work, we experimentally realize unidirectional microwave transduction with sub-micrometer-wavelength propagating magnons in a yttrium iron garnet (YIG) thin-film delay line. We achieve a non-decaying isolation of 30 dB with a broad field-tunable bandpass frequency range up to 14 GHz. The large isolation is due to the selection of chiral magnetostatic surface spin waves with the Oersted field generated from the coplanar waveguide antenna. Increasing the geometry ratio between the antenna width and YIG thickness drastically reduces the nonreciprocity and introduces additional magnon transmission bands. Our results pave the way for on-chip microwave isolation and tunable delay line with short-wavelength magnonic excitations.more » « less
-
We combine micromagnetic simulations and nitrogen-vacancy (NV) defect center spin relaxometry measurements to study magnon modes in inhomogeneous spin textures. A thin, micrometer-scale ferromagnetic disk is magnetized in a vortex state in which the magnetization curls around a central core. Micromagnetic simulations show that at zero applied field, the magnetization dynamics of the disk consist of a low frequency gyrotropic mode and higher frequency azimuthal magnon modes, all far detuned from the NV spin transition frequencies. An in-plane static magnetic field breaks the azimuthal symmetry of the vortex state, resulting in the magnon modes transforming in frequency and spatial profile as the field increases. Experimentally, we probe the dynamics of vortex magnetization as a function of applied in-plane static field and ac driving frequency by optically monitoring a nearby NV defect center spin. At certain values of the applied magnetic field, we observe enhanced spin relaxation when driving at twice the frequency of the NV ground state spin transition in optically detected magnetic resonance measurements. We attribute this effect to parallel pumping of a magnon mode in the disk producing magnons at half the excitation frequency. Micromagnetic simulations support this finding, showing spatial and spectral overlap of a confined magnon mode and an NV spin transition, with sufficient interaction strength to explain the observed signal.more » « less
-
Yttrium iron garnet (YIG) magnonics has garnered significant research interest because of the unique properties of magnons (quasiparticles of collective spin excitation) for signal processing. In particular, hybrid systems based on YIG magnonics show great promise for quantum information science due to their broad frequency tunability and strong compatibility with other platforms. However, their broad applications have been severely constrained by substantial microwave loss in the gadolinium gallium garnet (GGG) substrate at cryogenic temperatures. In this study, we demonstrate that YIG thin films can be spalled from YIG/GGG samples. Our approach is validated by measuring hybrid devices comprising superconducting resonators and spalled YIG films, which exhibit anti-crossing features that indicate strong coupling between magnons and microwave photons. Such new capability of separating YIG thin films from GGG substrates via spalling and the integrated superconductor-YIG devices represent a significant advancement for integrated magnonic devices, paving the way for advanced magnon-based coherent information processing.more » « less
-
Abstract Rare‐earth iron garnets (REIG) have recently become the materials platform of choice for spintronic studies on ferrimagnetic insulators. However, thus far the materials studied have mainly been REIG with a single rare earth species such as thulium, yttrium, or terbium iron garnets. In this study, magnetometry, ferromagnetic resonance, and magneto‐optical Kerr effect imaging is used to explore the continuous variation of magnetic properties as a function of composition for YxTm3−xiron garnet (YxTm3−xIG) thin films grown by pulsed laser deposition on gadolinium gallium garnet substrates. It is reported that the tunability of the magnetic anisotropy energy, with full control achieved over the type of anisotropy (from perpendicular, to isotropic, to an in‐plane easy axis) on the same substrate. In addition, a nonmonotonic composition‐dependent anisotropy term is reported, which is ascribed to growth‐induced anisotropy similar to what is reported in garnet thin films grown by liquid‐phase epitaxy. Ferromagnetic resonance shows linear variation of the damping and the g‐factor across the composition range, consistent with prior theoretical work. Domain imaging reveals differences in reversal modes, remanant states, and domain sizes in YxTm3−xiron‐garnet thin films as a function of anisotropy.more » « less
An official website of the United States government
