skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real area of contact and tractions on the patterned surfaces generated by spinodal decomposition and amplified instability
Past decades featured significant advancements in additive and micromanufacturing that facilitated the creation of functional patterned surfaces with impressive spatial resolutions. However, these techniques are expensive and require a considerable amount of time and energy, and hence lack scalability to practical surfaces. Recent techniques employing spinodal decomposition and instabilities amplified via centrifugal acceleration offer viable and cheaper alternatives. The patterns created by those techniques, however, vary randomly in geometry. When interfacing those patterned surfaces with other components and under self-contact scenarios, geometric variations lead to stress concentration and abrupt failure around the contact. In this study, we investigate numerically real contact areas, contact tractions, and stress concentration. We generate patterned surfaces in congruence with actual surfaces created by those techniques. Then, we conduct normal-contact analyses of those surfaces boundary element method (BEM) under nominal mean pressures ranging from 0.001E* toE*, whereE* is the contact modulus. We record real contact areas and stress concentration as a function of nominal mean pressures. We compare these values with the analytical solutions from sinusoidally-patterned and randomly rough surfaces. Randomness in pattern geometry is primarily influenced by the processing parameters such as the degree of anisotropy in spinodal decomposition and acceleration in amplified instabilities. To understand the influence of the processing parameters, we perform a parametric study. We find isotropic spinodal decomposition creates patterns that deliver contact area and traction distributions similar to randomly rough surfaces, and lead to high-stress concentrations. Such high-stress concentrations are expected to occur under self-contact loading scenarios, and thus can explain the compromised resilience and strength in recently-proposed spinodal metamaterials. For patterned surfaces created by amplified instabilities, high-stress concentrations are obtained for the surfaces created at high accelerations. At high accelerations, increased elastic instabilities and stochastic growth result in a more skewed and broader distribution in heights. Therefore, high-stress concentrations are inevitable. To account for combined loading scenarios, we conduct additional simulations on the same surface patterns with frictional pre-sliding contacts. We find the frictional tractions play a secondary role in stress concentrations where the primary factor is the processing parameters determining the degree of randomness in pattern geometry.  more » « less
Award ID(s):
2224380
PAR ID:
10480168
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Mechanical Engineering
Volume:
9
ISSN:
2297-3079
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Macrotextured silicone breast implants are associated with several complications, ranging from seromas and hematomas to the formation of a rare type of lymphoma, known as breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). The presence of silicone wear debris has been detected within the peri-implant region and fibrotic capsule and histological analyses reveal inflammatory cells surrounding debris particles. However, it is unclear how these debris particles are generated and released from macrotextured implant surfaces, and whether wear debris generation is related to implant stiffness. In this study, we created an accelerated implant aging model to investigate the formation of silicone wear debris produced from self-mated (“shell-shell”) tribological interactions. We created implant-like silicone elastomers from polydimethylsiloxane (PDMS) using Sylgard 184 base:curing agent (10:1, 12:1, and 16:1) and quantified their mechanical properties (E* = 1141 ± 472, 336 ± 20, and 167 ± 53 kPa, respectively). We created macrotextured PDMS samples using the lost-salt technique and compared their self-mated friction coefficient (< µ > = 4.8 ± 3.2, 4.9 ± 1.8, and 6.0 ± 2.3, respectively) and frictional shear stress (τ = 3.1 ± 1.3, 3.2 ± 1.7, and 2.4 ± 1.4 MPa, respectively) to those of the recalled Allergan Biocell macrotextured implant shell (E* = 299 ± 8 kPa, < µ > = 2.2, andτ = 0.8 ± 0.1). Friction coefficient and frictional shear stress were largely insensitive to variations in elastic modulus for macrotextured PDMS samples and recalled implant shells. The stiffest 10:1 PDMS macrotextured sample and the recalled implant shell both generated similar area fractions of silicone wear debris. However, the recalled implant shell released far more particles (> 10×), mainly within the range of 5 to 20 µm2in area. Bone marrow-derived macrophages (BMDMs) were treated with several concentrations of tribologically generated silicone wear debris. We observed widespread phagocytosis of wear debris particles and increasing secretion of inflammatory cytokines with increasing concentration of wear debris particles. Our investigation highlights the importance of avoiding macrotextured surfaces and mitigating wear debris generation from silicone implants to reduce chronic inflammation. 
    more » « less
  2. We introduce a wall model for large-eddy simulation (WMLES) applicable to rough surfaces with Gaussian and non-Gaussian distributions for both the transitionally and fully rough regimes. The model is applicable to arbitrary complex geometries where roughness elements are assumed to be underresolved, i.e. subgrid-scale roughness. The wall model is implemented using a multi-hidden-layer feedforward neural network, with the mean geometric properties of the roughness topology and near-wall flow quantities serving as input. The optimal set of non-dimensional input features is identified using information theory, selecting variables that maximize information about the output while minimizing redundancy among inputs. The model also incorporates a confidence score based on Gaussian process modelling, enabling the detection of potentially low model performance for untrained rough surfaces. The model is trained using a direct numerical simulation (DNS) roughness database comprising approximately 200 cases. The roughness geometries for the database are selected from a large repository through active learning. This approach ensures that the rough surfaces incorporated into the database are the most informative, achieving higher model performance with fewer DNS cases compared with passive learning techniques. The performance of the model is evaluated bothaprioriandaposterioriin WMLES of turbulent channel flows with rough walls. Over 550 channel flow cases are considered, including untrained roughness geometries, roughness Reynolds numbers and grid resolutions for both transitionally and fully rough regimes. Our rough-wall model offers higher accuracy than existing models, generally predicting wall shear stress within an accuracy range of 1%–15 %. The performance of the model is also assessed on a high-pressure turbine blade with two different rough surfaces. We show that the new wall model predicts the skin friction and the mean velocity deficit induced by the rough surface on the blade within 1%–10 % accuracy except the region with transition or shock waves. This work extends the building-block flow wall model (BFWM) introduced by Lozano-Durán & Bae (2023.J. Fluid Mech.963, A35) for smooth walls, expanding the BFWM framework to account for rough-wall scenarios. 
    more » « less
  3. Biology is replete with examples, at length scales ranging from the molecular (ligand–receptor binding) to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact compliance. Related bio-inspired and biomimetic structures have been used to achieve unique interfacial properties such as friction and adhesion enhancement, directional and switchable properties. The ability to tune friction by altering surface structures offers advantages in various fields, such as soft robotics and tire manufacturing. Here, we present a study of friction between polydimethylsiloxane (PDMS) samples with surfaces patterned with pillar-arrays. When brought in contact with each other the two samples spontaneously produce a Moire´ pattern that can also be represented as an array of interfacial dislocations that depends on interfacial misorientation and lattice spacing. Misorientation alone produces an array of screw dislocations, while lattice mismatch alone produces an array of edge dislocations. Relative sliding motion is accompanied by interfacial glide of these patterns. The frictional force resisting dislocation glide arises from periodic single pillar–pillar contact and sliding. We study the behavior of pillar–pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction measurements are combined with a geometric model for relative sliding to calculate frictional stress that is in good agreement with experiments. 
    more » « less
  4. Abstract Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus‐inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi‐surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large‐scale curvatures and increases contact stress for adaptability to small‐scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects. 
    more » « less
  5. Insects and small animals often utilize structured surfaces to create friction during their movements. These surfaces typically consist of pillar-like fibrils that interact with a counter surface. Understanding the mechanical interaction between such surfaces is crucial for designing structured surfaces for engineering applications. In the first part of our study, we examined friction between poly(dimethylsiloxane) (PDMS) samples with surfaces patterned with pillar-arrays. We observed that sliding between these surfaces occurs through the interfacial glide of dislocation structures. The frictional force that resists this dislocation glide is a result of periodic single pillar-pillar contact and sliding. Hence, comprehending the intricate interaction between individual pillar contacts is a fundamental prerequisite for accurately modeling the friction behavior of the pillar array. In this second part of the study, we thoroughly investigated the contact interaction between two pillars located on opposite sides of an interface, with different lateral and vertical offsets. We conducted experiments using PDMS pillars to measure both the reaction shear and normal forces. Contact interaction between pillars was then studied using finite element (FE) simulations with the Coulomb friction model, which yielded results that aligned well with the experimental data. Our result offers a fundamental solution for comprehending how fibrillar surfaces contact and interact during sliding, which has broad applications in both natural and artificial surfaces. 
    more » « less