skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous precision separation of gold using a metal-organic framework/polymer composite
Abstract Critical metals of environmental and economic relevance can be found within complex mixtures, such as mine tailings, electronic waste and wastewater, at trace amounts. Specifically, gold is a critical metal that carries desired redox active properties in various applications, including modern electronics, medicine and chemical catalysis. Here we report the structuring of sub-micron Fe-BTC/PpPDA crystallites into larger 250 μm or 500 μm granules for continuous packed bed experiments for the precision separation of gold. The Structured Fe-BTC/PpPDA is highly crystalline and porous with a BET surface area of 750 m2 g-1. Further, the hybrid nanocomposite material maintains its selectivity for gold ions over common inorganic interferents. The structuring approach reported prevents excessive pressure drop and ensures stability over time and operation in a packed bed column. Further, we demonstrate that the Structured Fe-BTC/PpPDA can concentrate at least 42 wt. % of gold under a dynamic continuous flow operation. These findings highlight the potential of Structured Fe-BTC/PpPDA for practical applications in industry, particularly in the selective capture of gold from complex mixtures.  more » « less
Award ID(s):
2151734
PAR ID:
10480402
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nanotechnology
ISSN:
0957-4484
Subject(s) / Keyword(s):
Precision Separations Gold Metal-organic Frameworks/Polymer Composite Continuous Packed Bed Columns Mining Critical Metals
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diverse sources of wastewater organic carbon can be microbially funneled into biopolymers like polyhydroxybutyrate (PHB) that can be further valorized by conversion to hydrocarbon fuels and industrial chemicals. We report the vapor-phase dehydration and decarboxylation of PHB-derived monomer acids, 3-hydroxybutyric acid (3HB) and crotonic acid (CA), in water to propylene over solid acid catalysts using a packed-bed continuous-flow reactor. Propylene yields increase with increased Brønsted acidity of catalysts, with amorphous silica–alumina and niobium phosphate yielding 52 and 60 %C (percent feedstock carbon, max 75 %C) of feedstock 3HB and CA, respectively; additional products include CO 2 and retro-aldol products (acetaldehyde and acetic acid). Deactivation studies indicate progressive and permanent steam deactivation of amorphous silica–alumina, while re-calcination partially recovers niobium phosphate activity. Experiments demonstrating sustained reactor operation over niobium phosphate provide a promising technology pathway for increasing valorization of organic-rich wastewater. 
    more » « less
  2. null (Ed.)
    Biomass conversion to alcohols using supercritical methanol depolymerization and hydrodeoxygenation (SCM-DHO) with CuMgAl mixed metal oxide is a promising process for biofuel production. We demonstrate how maple wood can be converted at high weight loadings and product concentrations in a batch and a semi-continuous reactor to a mixture of C 2 –C 10 linear and cyclic alcohols. Maple wood was solubilized semi-continuously in supercritical methanol and then converted to a mixture of C 2 –C 9 alcohols and aromatics over a packed bed of CuMgAlO x catalyst. Up to 95 wt% of maple wood can be solubilized in the methanol by using four temperature holds at 190, 230, 300, and 330 °C. Lignin was solubilized at 190 and 230 °C to a mixture of monomers, dimers, and trimers while hemicellulose and cellulose solubilized at 300 and 330 °C to a mixture of oligomeric sugars and liquefaction products. The hemicellulose, cellulose, and lignin were converted to C 2 –C 10 alcohol fuel precursors over a packed bed of CuMgAlO x catalyst with 70–80% carbon yield of the entire maple wood. The methanol reforming activity of the catalyst decreased by 25% over four beds of biomass, which corresponds to 5 turnovers for the catalyst, but was regenerable after calcination and reduction. In batch reactions, maple wood was converted at 10 wt% in methanol with 93% carbon yield to liquid products. The product concentration can be increased to 20 wt% by partially replacing the methanol with liquid products. The yield of alcohols in the semi-continuous reactor was approximately 30% lower than in batch reactions likely due to degradation of lignin and cellulose during solubilization. These results show that solubilization of whole biomass can be separated from catalytic conversion of the intermediates while still achieving a high yield of products. However, close contact of the catalyst and the biomass during solubilization is critical to achieve the highest yields and concentration of products. 
    more » « less
  3. Abstract Sand‐clay mixtures are common in both freshwater and saltwater environments, yet how they behave under different levels of salinity remains poorly understood. Here, we demonstrate the impact of salinity on the rheological properties and erosion threshold of sand‐clay mixtures through systematically controlled flume experiments and rheological measurements. Mixtures with a representative bentonite‐to‐sand ratio typical of natural estuarine and coastal sediments were prepared at salinities ranging from 0 to 35 parts per thousand (ppt), spanning freshwater to seawater conditions. We measured viscosity, flow‐point stress, and yield stress of the mixtures using a rheometer and determined the critical bed shear stress in a water‐recirculating flume. Our results indicate that as salinity increases from 0 to 35 ppt, the critical bed shear stress decreases by about two orders of magnitude, from about 60 Pa at 0 ppt to less than 1 Pa at 35 ppt. Similarly, both the flow‐point stress and yield stress decreased by over two orders of magnitude with increasing salinity. These changes correspond to a salinity‐induced transition of the sand‐bentonite mixture from a cohesive, strong‐gel state in freshwater (0 ppt), to a weak‐gel state between 3 and 10 ppt, and finally to a fluid‐like state above 10 ppt. Our research highlights the important role of salt in controlling the rheological properties and erosion threshold of fresh, non‐consolidated deposits of sand‐clay mixtures, with implications for predicting coastal landscape evolution and designing erosion‐control strategies. 
    more » « less
  4. Abstract Plasmas interacting with liquid surfaces produce a complex interfacial layer where the local chemistry in the liquid is driven by fluxes from the gas phase of electrons, ions, photons, and neutral radicals. Typically, the liquid surface has at best mild curvature with the fluxes of impinging plasma species and applied electric field being nominally normal to the surface. With liquids such as water having a high dielectric constant, structuring of the liquid surface by producing a wavy surface enables local electric field enhancement due to polarization of the liquid, as well as producing regions of higher and lower advective gas flow across the surface. This structuring (or waviness) can naturally occur or can be achieved by mechanical agitation such as with acoustic transducers. Electric field enhancement at the peaks of the waves of the liquid produces local increases in sources of reactive species and incident plasma fluxes which may be advantageous for plasma driven solution electrochemistry (PDSE) applications. In this paper, results are discussed from a computational investigation of pulsed atmospheric pressure plasma jets onto structured water solutions containing AgNO3as may be used in PDSE for silver nanoparticle (NP) formation. The solution surface consists of standing wave patterns having wavelength and wave depth of hundreds of microns to 1 mm. The potential for structured liquid surfaces to facilitate spatially differentiated chemical selectivity and enhance NP synthesis in the context of PDSE is discussed. 
    more » « less
  5. Abstract This manuscript describes transfer hydrogenation of bicyclic nitrogen-containing heterocyclic compounds using the immobilized chiral phosphoric acid catalyst (R)-PS-AdTRIP in batch and continuous flow. A significant improvement in enantioselectivities is achieved in continuous flow with a fluidized bed reactor packed with (R)-PS-AdTRIP when the flow rate is increased from 0.2 mL/min to 2.0–2.5 mL/min. The optimized continuous flow conditions consistently provide 4–6% ee higher selectivity than transfer hydrogenation in batch with 2 mol% of (R)-PS-AdTRIP, and are used to generate multiple chiral products with the same fluidized bed reactor. 
    more » « less