Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic (MLTL) intuitively express CPSoS requirements for automated system verification and validation. However, both LTL and MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or distance), and agree on a standard “time” step. Formal verification of cyber-physical systems-of-systems needs validate-able requirements expressed over (sub-)system signals of different types, such as signals sampled at different timescales, distances, or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types (e.g., timescales) by sacrificing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a verbal and formal specification will ease validation, reduce bugs, increase productivity, and linearize the workflow from a project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Verification Workshop, 2022), a logic building on MLTL. MLTLM enables writing formal requirements over finite input signals (e.g., sensor signals and local computations) of different types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a direct correspondence between a verbal requirement and its corresponding formal specification. Additionally, reasoning a formal specification in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use significantly less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples on types (e.g., time and space) expressed in the same specification, (2) proofs omitted for space in the workshop version, (3) proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length.
more »
« less
Controller Synthesis for Unknown-Mode Linear Systems with an Epistemic variant of LTL
Linear temporal logic (LTL) with the knowledge operator, denoted as KLTL, is a variant of LTL that incorporates what an agent knows or learns at run-time into its specification. Therefore it is an appropriate logical formalism to specify tasks for systems with unknown components that are learned or estimated at run-time. In this paper, we consider a linear system whose system matrices are unknown but come from an a priori known finite set. We introduce a form of KLTL that can be interpreted over the trajectories of such systems. Finally, we show how controllers that guarantee satisfaction of specifications given in fragments of this form of KLTL can be synthesized using optimization techniques. Our results are demonstrated in simulation and on hardware in a drone scenario where the task of the drone is conditioned on its health status, which is unknown a priori and discovered at run-time.
more »
« less
- Award ID(s):
- 1931982
- PAR ID:
- 10480609
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2806-6
- Page Range / eLocation ID:
- 3508 to 3515
- Format(s):
- Medium: X
- Location:
- San Diego, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present a data-driven framework for strategy synthesis for partially-known switched stochastic systems. The properties of the system are specified using linear temporal logic (LTL) over finite traces (LTLf), which is as expressive as LTL and enables interpretations over finite behaviors. The framework first learns the unknown dynamics via Gaussian process regression. Then, it builds a formal abstraction of the switched system in terms of an uncertain Markov model, namely an Interval Markov Decision Process (IMDP), by accounting for both the stochastic behavior of the system and the uncertainty in the learning step. Then, we synthesize a strategy on the resulting IMDP that maximizes the satisfaction probability of the LTLf specification and is robust against all the uncertainties in the abstraction. This strategy is then refined into a switching strategy for the original stochastic system. We show that this strategy is near-optimal and provide a bound on its distance (error) to the optimal strategy. We experimentally validate our framework on various case studies, including both linear and non-linear switched stochastic systems.more » « less
-
Runtime verificationis a lightweight method for monitoring the formal specification of a system during its execution. It has recently been shown that a given state predicate can be monitored consistently by a set of crash-prone asynchronousdistributedmonitors observing the system, only if each monitor can emit verdicts taken from alarge enoughfinite set. We revisit this impossibility result in the concrete context of linear-time logic (ltl) semantics for runtime verification, that is, when the correctness of the system is specified by anltlformula on its execution traces. First, we show that monitors synthesized based on the 4-valued semantics ofltl(rv-ltl) may result in inconsistent distributed monitoring, even for some simpleltlformulas. More generally, given anyltlformula φ, we relate the number of different verdicts required by the monitors for consistently monitoring φ, with a specific structural characteristic of φ called itsalternation number. Specifically, we show that, for everyk ≥ 0, there is anltlformula φ with alternation number kthat cannot be verified at runtime by distributed monitors emitting verdicts from a set of cardinality smaller thank+ 1. On the positive side, we define a family of logics, calleddistributedltl(abbreviated asdltl), parameterized byk≥ 0, which refinesrv-ltlby incorporating2k+ 4 truth values. Our main contribution is to show that, for everyk≥ 0, everyltlformula φ with alternation number kcan be consistently monitored by distributed monitors, each running an automaton based on a (2 ⌈k/2 ⌉ +4)-valued logic taken from thedltlfamily.more » « less
-
Abstract—Often times, we specify tasks for a robot using tem- poral language that can also span different levels of abstraction. The example command “go to the kitchen before going to the second floor” contains spatial abstraction, given that “floor” consists of individual rooms that can also be referred to in isolation (“kitchen”, for example). There is also a temporal ordering of events, defined by the word “before”. Previous works have used Linear Temporal Logic (LTL) to interpret temporal language (such as “before”), and Abstract Markov Decision Processes (AMDPs) to interpret hierarchical abstractions (such as “kitchen” and “second floor”), separately. To handle both types of commands at once, we introduce the Abstract Product Markov Decision Process (AP-MDP), a novel approach capable of representing non-Markovian reward functions at different levels of abstractions. The AP-MDP framework translates LTL into its corresponding automata, creates a product Markov Decision Process (MDP) of the LTL specification and the environment MDP, and decomposes the problem into subproblems to enable efficient planning with abstractions. AP-MDP performs faster than a non-hierarchical method of solving LTL problems in over 95% of tasks, and this number only increases as the size of the en- vironment domain increases. We also present a neural sequence- to-sequence model trained to translate language commands into LTL expression, and a new corpus of non-Markovian language commands spanning different levels of abstraction. We test our framework with the collected language commands on a drone, demonstrating that our approach enables a robot to efficiently solve temporal commands at different levels of abstraction.more » « less
-
null (Ed.)Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that complies with desired properties expressed in LTL. Unfortunately it has been proved to be too difficult computationally to perform full LTL synthesis. There have been two success stories with LTL synthesis, both having to do with the form of the specification. The first is the GR(1) approach: use safety conditions to determine the possible transitions in a game between the environment and the agent, plus one powerful notion of fairness, Generalized Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace temporal synthesis, with LTLf (LTL on finite traces) as the specification language. In this paper we take these two lines of work and bring them together. We first study the case in which we have an LTLf agent goal and a GR(1) assumption. We then add to the framework safety conditions for both the environment and the agent, obtaining a highly expressive yet still scalable form of LTL synthesis.more » « less
An official website of the United States government
