skip to main content


Title: Controller Synthesis for Unknown-Mode Linear Systems with an Epistemic variant of LTL
Linear temporal logic (LTL) with the knowledge operator, denoted as KLTL, is a variant of LTL that incorporates what an agent knows or learns at run-time into its specification. Therefore it is an appropriate logical formalism to specify tasks for systems with unknown components that are learned or estimated at run-time. In this paper, we consider a linear system whose system matrices are unknown but come from an a priori known finite set. We introduce a form of KLTL that can be interpreted over the trajectories of such systems. Finally, we show how controllers that guarantee satisfaction of specifications given in fragments of this form of KLTL can be synthesized using optimization techniques. Our results are demonstrated in simulation and on hardware in a drone scenario where the task of the drone is conditioned on its health status, which is unknown a priori and discovered at run-time.  more » « less
Award ID(s):
1931982
NSF-PAR ID:
10480609
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2806-6
Page Range / eLocation ID:
3508 to 3515
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a data-driven framework for strategy synthesis for partially-known switched stochastic systems. The properties of the system are specified using linear temporal logic (LTL) over finite traces (LTLf), which is as expressive as LTL and enables interpretations over finite behaviors. The framework first learns the unknown dynamics via Gaussian process regression. Then, it builds a formal abstraction of the switched system in terms of an uncertain Markov model, namely an Interval Markov Decision Process (IMDP), by accounting for both the stochastic behavior of the system and the uncertainty in the learning step. Then, we synthesize a strategy on the resulting IMDP that maximizes the satisfaction probability of the LTLf specification and is robust against all the uncertainties in the abstraction. This strategy is then refined into a switching strategy for the original stochastic system. We show that this strategy is near-optimal and provide a bound on its distance (error) to the optimal strategy. We experimentally validate our framework on various case studies, including both linear and non-linear switched stochastic systems. 
    more » « less
  2. Runtime verificationis a lightweight method for monitoring the formal specification of a system during its execution. It has recently been shown that a given state predicate can be monitored consistently by a set of crash-prone asynchronousdistributedmonitors observing the system, only if each monitor can emit verdicts taken from alarge enoughfinite set. We revisit this impossibility result in the concrete context of linear-time logic (ltl) semantics for runtime verification, that is, when the correctness of the system is specified by anltlformula on its execution traces. First, we show that monitors synthesized based on the 4-valued semantics ofltl(rv-ltl) may result in inconsistent distributed monitoring, even for some simpleltlformulas. More generally, given anyltlformula φ, we relate the number of different verdicts required by the monitors for consistently monitoring φ, with a specific structural characteristic of φ called itsalternation number. Specifically, we show that, for everyk ≥ 0, there is anltlformula φ with alternation number kthat cannot be verified at runtime by distributed monitors emitting verdicts from a set of cardinality smaller thank+ 1. On the positive side, we define a family of logics, calleddistributedltl(abbreviated asdltl), parameterized byk≥ 0, which refinesrv-ltlby incorporating2k+ 4 truth values. Our main contribution is to show that, for everyk≥ 0, everyltlformula φ with alternation number kcan be consistently monitored by distributed monitors, each running an automaton based on a (2 ⌈k/2 ⌉ +4)-valued logic taken from thedltlfamily.

     
    more » « less
  3. Abstract

    Runtime monitoring is commonly used to detect the violation of desired properties in safety critical cyber-physical systems by observing its executions. Bauer et al. introduced an influential framework for monitoring Linear Temporal Logic (LTL) properties based on a three-valued semantics for a finite execution: the formula is already satisfied by the given execution, it is already violated, or it is still undetermined, i.e., it can still be satisfied and violated by appropriate extensions of the given execution. However, a wide range of formulas are not monitorable under this approach, meaning that there are executions for which satisfaction and violation will always remain undetermined no matter how it is extended. In particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall into this category. Recently, a robust semantics for LTL was introduced to capture different degrees by which a property can be violated. In this paper we introduce a robust semantics for finite strings and show its potential in monitoring: every formula considered by Bauer et al. is monitorable under our approach. Furthermore, we discuss which properties that come naturally in LTL monitoring—such as the realizability of all truth values—can be transferred to the robust setting. We show that LTL formulas with robust semantics can be monitored by deterministic automata, and provide tight bounds on the size of the constructed automaton. Lastly, we report on a prototype implementation and compare it to the LTL monitor of Bauer et al. on a sample of examples.

     
    more » « less
  4. null (Ed.)
    Runtime monitoring is commonly used to detect the violation of desired properties in safety critical cyber-physical systems by observing its executions. Bauer et al. introduced an influential framework for monitoring Linear Temporal Logic (LTL) properties based on a three-valued semantics: the formula is already satisfied by the given prefix, it is already violated, or it is still undetermined, i.e., it can still be satisfied and violated by appropriate extensions. However, a wide range of formulas are not monitorable under this approach, meaning that they have a prefix for which satisfaction and violation will always remain undetermined no matter how it is extended. In particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall into this category. Recently, a robust semantics for LTL was introduced to capture different degrees by which a property can be violated. In this paper we introduce a robust semantics for finite strings and show its potential in monitoring: every formula considered by Bauer et al. is monitorable under our approach. Furthermore, we discuss which properties that come naturally in LTL monitoring — such as the realizability of all truth values — can be transferred to the robust setting. Lastly, we show that LTL formulas with robust semantics can be monitored by deterministic automata and report on a prototype implementation. 
    more » « less
  5. null (Ed.)
    Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that complies with desired properties expressed in LTL. Unfortunately it has been proved to be too difficult computationally to perform full LTL synthesis. There have been two success stories with LTL synthesis, both having to do with the form of the specification. The first is the GR(1) approach: use safety conditions to determine the possible transitions in a game between the environment and the agent, plus one powerful notion of fairness, Generalized Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace temporal synthesis, with LTLf (LTL on finite traces) as the specification language. In this paper we take these two lines of work and bring them together. We first study the case in which we have an LTLf agent goal and a GR(1) assumption. We then add to the framework safety conditions for both the environment and the agent, obtaining a highly expressive yet still scalable form of LTL synthesis. 
    more » « less