The use of engineered nanomaterials, defined as those smaller than 100 nm, in the health, energy, agricultural, and environmental sectors is expanding rapidly. As such, human and environmental exposure to these materials is increasing every day. For example, metal-based nanomaterials, such as nanosilver, have become ubiquitous in antibacterial applications ranging from socks and baby bottles to healthcare materials, such as oral fillings. Engineered nanomaterials are also used as antibacterial agents and adjuvants to improve antibiotic delivery or efficacy. However, even nanomaterials that were not designed to be antimicrobial can possess potent bactericidal activity. Alarmingly, there are clear connections between nanomaterial exposure, metal resistance, and antibiotic resistance and it is crucial that we dramatically improve our understanding of both the toxicity of these materials and their ability to permanently change the organisms that they encounter. Emerging research indicates that microbes are capable of adapting to nanomaterial toxicity, often with the same generalizable mechanisms used to overcome antibiotic toxicity. In this perspective, we highlight existing knowledge about microbial response to engineered nanomaterials and the key outstanding questions that must be addressed.
more »
« less
Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
more »
« less
- Award ID(s):
- 2228033
- PAR ID:
- 10480678
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Biosensors
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2079-6374
- Page Range / eLocation ID:
- 1082
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.8) that promote wheat (Triticum aestivum) growth and increased N uptake compared to conventional urea fertilizers. ZnHAU and FeHAU exhibited prolonged N release compared to urea in model plant apoplast fluid pH in vitro (up to 2 days) and in leaf membranes in plants (up to 10 days) with a high N retention (32% to 53%) under simulated high rainfall events (50 mm). Foliar N delivery doses of up to 4% as ZnHAU and FeHAU did not induce toxicity in plant cells. The foliar-applied ZnHAU and FeHAU enhanced fresh and dry biomass by ∼214% and ∼161%, and N uptake by ∼108% compared to foliar-applied urea under low soil N conditions in greenhouse experiments. Controlled N release by leaf-attached nanomaterials improves N delivery and use efficiency in crop plants, creating nanofertilizers with reduced environmental impact.more » « less
-
Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.more » « less
-
Abstract Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials. Here, we report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence, using a magnetic field. We reveal that dispersion stability is greatly enhanced using polymeric, rather than small molecule, LCs and is considerably greater in the smectic phases of the resulting systems relative to the nematic phases. Aligned composites exhibit highly polarized emission that is readily manipulated by field-realignment. Such dynamic alignment of optically-active 2D nanomaterials may enable the development of programmable materials for photonic applications and the methodology can guide designs for anisotropic nanomaterial composites for a broad set of related nanomaterials.more » « less
-
Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/μM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.more » « less
An official website of the United States government

