Abstract It is well-known that stars have the potential to be excellent dark matter detectors. Infalling dark matter that scatters within stars could lead to a range of observational signatures, including stellar heating, black hole formation, and modified heat transport. To make robust predictions for such phenomena, it is necessary to calculate the scattering rate for dark matter inside the star. As we show in this paper, for small enough momentum transfers, this requires taking into account collective effects within the dense stellar medium. These effects have been neglected in many previous treatments; we demonstrate how to incorporate them systematically, and show that they can parametrically enhance or suppress dark matter scattering rates depending on how dark matter couples to the Standard Model. We show that, as a result, collective effects can significantly modify the potential discovery or exclusion reach for observations of compact objects such as white dwarfs and neutron stars. While the effects are more pronounced for dark matter coupling through a light mediator, we show that even for dark matter coupling via a heavy mediator, scattering rates can differ by orders of magnitude from their naive values for dark matter masses ≲ 100 MeV. We also illustrate how collective effects can be important for dark matter scattering in more dilute media, such as the Solar core. Our results demonstrate the need to systematically incorporate collective effects in a wide range of astroparticle contexts; to facilitate this, we provide expressions for in-medium self-energies for a variety of different media, which are applicable to many other processes of interest (such as particle production).
more »
« less
Exploration of the prerecombination universe with a high-dimensional model of an additional dark fluid
We implement and explore high-dimensional generalized dark matter (HDGDM) with an arbitrary equation of state as a function of redshift as an extension to Λ cold dark matter. Exposing this model to cosmic microwave background, baryon acoustic oscillations, and supernova data, we demonstrate that the use of marginalized posterior distributions can easily lead to misleading conclusions on the viability of a high-dimensional model such as this one. We discuss such pitfalls and corresponding mitigation strategies, which can be used to search for an observationally favored region of the parameter space. We further show that the HDGDM model in particular does show promise in terms of its ability to ease the Hubble tension once such techniques are employed, and we find interesting features in the best-fitting equation of state that can serve as an inspiration for future model building.
more »
« less
- Award ID(s):
- 2010015
- PAR ID:
- 10480686
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 108
- Issue:
- 10
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study the phenomenology of superheavy decaying dark matter with mass around 1010GeV which can arise in the low-energy limit of string compactifications. Generic features of string theory setups (such as high scale supersymmetry breaking and epochs of early matter domination driven by string moduli) can accommodate superheavy dark matter with the correct relic abundance. In addition, stringy instantons induce tinyR-parity violating couplings which make dark matter unstable with a lifetime well above the age of the Universe. Adopting a model-independent approach, we compute the flux and spectrum of high-energy gamma rays and neutrinos from three-body decays of superheavy dark matter and constrain its mass-lifetime plane with current observations and future experiments. We show that these bounds have only a mild dependence on the exact nature of neutralino dark matter and its decay channels. Applying these constraints to an explicit string model sets an upper bound of$$ \mathcal{O} $$ (0.1) on the string coupling, ensuring that the effective field theory is in the perturbative regime.more » « less
-
Recent advances in quantum sensors, including atomic clocks, enable searches for a broad range of dark matter candidates. The question of the dark matter distribution in the Solar system critically affects the reach of dark matter direct detection experiments. Partly motivated by the NASA Deep Space Atomic Clock (DSAC), we show that space quantum sensors present new opportunities for ultralight dark matter searches, especially for dark matter states bound to the Sun. We show that space quantum sensors can probe unexplored parameter space of ultralight dark matter, covering theoretical relaxion targets motivated by naturalness and Higgs mixing. If an atomic clock were able to make measurements on the interior of the solar system, it could probe this highly sensitive region directly and set very strong constraints on the existence of such a bound-state halo in our solar system. We present sensitivity projections for space-based probes of ultralight dark matter which couples to electron, photon, and gluon fields, based on current and future atomic, molecular, and nuclear clocks.more » « less
-
A<sc>bstract</sc> In this paper we study a near-continuum dark matter model, in which dark sector consists of a tower of closely spaced states with weak-scale masses. We construct a five-dimensional model which naturally realizes this spectrum. The dark matter is described by a bulk field, which interacts with the brane-localized Standard Model sector via aZportal. We then study collider signatures of this model. Near-continuum dark matter states produced in a collider undergo cascade decays, resulting in events with high multiplicity of jets and leptons, large missing energy, and displaced vertices. A custom-built Monte Carlo tool described in this paper allows for detailed simulation of the signal events. We present results of such simulations for the case of electron-positron collisions.more » « less
-
A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor.more » « less
An official website of the United States government

