Over the last several decades, scholars have reexamined the importance of spatiality to human life and argued that space produces and is produced by social relationships. This article adopts such a relational understanding of space to examine the production of eco‐archaeological tourist attractions in the eastern Yucatan Peninsula of Mexico and beyond. Specifically, this article considers the common practice of declaring areas encompassing archaeological sites as nature parks or wildernesses. Because so many sites are currently located in areas that have been deemed natural, scholars cannot fully understand the contemporary production of archaeological space without examining the historic production of nature and wilderness. Using the Xcaret Eco‐Archaeological Park and the Otoch Ma'ax Yetel Kooh, this article shows that although the creation of archaeological nature parks frequently harms indigenous peoples through processes of spatial colonization and spatial commodification, the production of such spaces can also enable and empower local, marginalized groups. [
- Award ID(s):
- 2114235
- PAR ID:
- 10480876
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Advances in Archaeological Practice
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2326-3768
- Page Range / eLocation ID:
- 104 to 110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT wilderness, political authority social inequality, community archaeology, the Maya ] -
The development and application of luminescence dating and dosimetry techniques have grown exponentially in the last several decades. Luminescence methods provide age control for a broad range of geological and archaeological contexts and can characterize mineral and glass properties linked to geologic origin, Earth-surface processes, and past exposure to light, heat, and ionizing radiation. The applicable age range for luminescence methods spans the last 500,000 years or more, which covers the period of modern human evolution, and provides context for rates and magnitudes of geological processes, hazards, and climate change. Given the growth in applications and publications of luminescence data, there is a need for unified, community-driven guidance regarding the publication and interpretation of luminescence results. This paper presents a guide to the essential information necessary for publishing and archiving luminescence ages as well as supporting data that is transportable and expandable for different research objectives and publication outlets. We outline the information needed for the interpretation of luminescence data sets, including data associated with equivalent dose, dose rate, age models, and stratigraphic context. A brief review of the fundamentals of luminescence techniques and applications, including guidance on sample collection and insight into laboratory processing and analysis steps, is presented to provide context for publishing and data archiving.more » « less
-
Abstract Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.
-
While archaeologists have long understood that thermal and multi-spectral imagery can potentially reveal a wide range of ancient cultural landscape features, only recently have advances in drone and sensor technology enabled us to collect these data at sufficiently high spatial and temporal resolution for archaeological field settings. This paper presents results of a study at the Enfield Shaker Village, New Hampshire (USA), in which we collect a time-series of multi-spectral visible light, near-infrared (NIR), and thermal imagery in order to better understand the optimal contexts and environmental conditions for various sensors. We present new methods to remove noise from imagery and to combine multiple raster datasets in order to improve archaeological feature visibility. Analysis compares results of aerial imaging with ground-penetrating radar and magnetic gradiometry surveys, illustrating the complementary nature of these distinct remote sensing methods. Results demonstrate the value of high-resolution thermal and NIR imagery, as well as of multi-temporal image analysis, for the detection of archaeological features on and below the ground surface, offering an improved set of methods for the integration of these emerging technologies into archaeological field investigations.more » « less
-
null (Ed.)While archaeologists have long understood that thermal and multi-spectral imagery can potentially reveal a wide range of ancient cultural landscape features, only recently have advances in drone and sensor technology enabled us to collect these data at sufficiently high spatial and temporal resolution for archaeological field settings. This paper presents results of a study at the Enfield Shaker Village, New Hampshire (USA), in which we collect a time-series of multi-spectral visible light, near-infrared (NIR), and thermal imagery in order to better understand the optimal contexts and environmental conditions for various sensors. We present new methods to remove noise from imagery and to combine multiple raster datasets in order to improve archaeological feature visibility. Analysis compares results of aerial imaging with ground-penetrating radar and magnetic gradiometry surveys, illustrating the complementary nature of these distinct remote sensing methods. Results demonstrate the value of high-resolution thermal and NIR imagery, as well as of multi-temporal image analysis, for the detection of archaeological features on and below the ground surface, offering an improved set of methods for the integration of these emerging technologies into archaeological field investigationsmore » « less