skip to main content


Title: Guide for interpreting and reporting luminescence dating results
The development and application of luminescence dating and dosimetry techniques have grown exponentially in the last several decades. Luminescence methods provide age control for a broad range of geological and archaeological contexts and can characterize mineral and glass properties linked to geologic origin, Earth-surface processes, and past exposure to light, heat, and ionizing radiation. The applicable age range for luminescence methods spans the last 500,000 years or more, which covers the period of modern human evolution, and provides context for rates and magnitudes of geological processes, hazards, and climate change. Given the growth in applications and publications of luminescence data, there is a need for unified, community-driven guidance regarding the publication and interpretation of luminescence results. This paper presents a guide to the essential information necessary for publishing and archiving luminescence ages as well as supporting data that is transportable and expandable for different research objectives and publication outlets. We outline the information needed for the interpretation of luminescence data sets, including data associated with equivalent dose, dose rate, age models, and stratigraphic context. A brief review of the fundamentals of luminescence techniques and applications, including guidance on sample collection and insight into laboratory processing and analysis steps, is presented to provide context for publishing and data archiving.  more » « less
Award ID(s):
1735891
NSF-PAR ID:
10447828
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  2. null (Ed.)
    Abstract The 40Ar/39Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing 40Ar/39Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of 40Ar/39Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting 40Ar/39Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of 40Ar/39Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity. 
    more » « less
  3. Scientists who perform major survival surgery on laboratory animals face a dual welfare and methodological challenge: how to choose surgical anesthetics and post-operative analgesics that will best control animal suffering, knowing that both pain and the drugs that manage pain can all affect research outcomes. Scientists who publish full descriptions of animal procedures allow critical and systematic reviews of data, demonstrate their adherence to animal welfare norms, and guide other scientists on how to conduct their own studies in the field. We investigated what information on animal pain management a reasonably diligent scientist might find in planning for a successful experiment. To explore how scientists in a range of fields describe their management of this ethical and methodological concern, we scored 400 scientific articles that included major animal survival surgeries as part of their experimental methods, for the completeness of information on anesthesia and analgesia. The 400 articles (250 accepted for publication pre-2011, and 150 in 2014–15, along with 174 articles they reference) included thoracotomies, craniotomies, gonadectomies, organ transplants, peripheral nerve injuries, spinal laminectomies and orthopedic procedures in dogs, primates, swine, mice, rats and other rodents. We scored articles for Publication Completeness (PC), which was any mention of use of anesthetics or analgesics; Analgesia Use (AU) which was any use of post-surgical analgesics, and Analgesia Completeness (a composite score comprising intra-operative analgesia, extended post-surgical analgesia, and use of multimodal analgesia). 338 of 400 articles were PC. 98 of these 338 were AU, with some mention of analgesia, while 240 of 338 mentioned anesthesia only but not postsurgical analgesia. Journals’ caliber, as measured by their 2013 Impact Factor, had no effect on PC or AU. We found no effect of whether a journal instructs authors to consult the ARRIVE publishing guidelines published in 2010 on PC or AC for the 150 mouse and rat articles in our 2014–15 dataset. None of the 302 articles that were silent about analgesic use included an explicit statement that analgesics were withheld, or a discussion of how pain management or untreated pain might affect results. We conclude that current scientific literature cannot be trusted to present full detail on use of animal anesthetics and analgesics. We report that publication guidelines focus more on other potential sources of bias in experimental results, under-appreciate the potential for pain and pain drugs to skew data, PLOS ONE | DOI:10.1371/journal.pone.0155001 May 12, 2016 1 / 24 a11111 OPEN ACCESS Citation: Carbone L, Austin J (2016) Pain and Laboratory Animals: Publication Practices for Better Data Reproducibility and Better Animal Welfare. PLoS ONE 11(5): e0155001. doi:10.1371/journal. pone.0155001 Editor: Chang-Qing Gao, Central South University, CHINA Received: December 29, 2015 Accepted: April 22, 2016 Published: May 12, 2016 Copyright: © 2016 Carbone, Austin. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Authors may be contacted for further information. Funding: This study was funded by the United States National Science Foundation Division of Social and Economic Sciences. Award #1455838. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. and thus mostly treat pain management as solely an animal welfare concern, in the jurisdiction of animal care and use committees. At the same time, animal welfare regulations do not include guidance on publishing animal data, even though publication is an integral part of the cycle of research and can affect the welfare of animals in studies building on published work, leaving it to journals and authors to voluntarily decide what details of animal use to publish. We suggest that journals, scientists and animal welfare regulators should revise current guidelines and regulations, on treatment of pain and on transparent reporting of treatment of pain, to improve this dual welfare and data-quality deficiency. 
    more » « less
  4. Abstract

    Stage‐based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open‐access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported.

    Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs.

    Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked towww.compadre‐db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open‐access repositories such as DRYAD, Figshare and Zenodo.

    Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility.

     
    more » « less
  5. The research data repository of the Environmental Data Initiative (EDI) is building on over 30 years of data curation research and experience in the National Science Foundation-funded US Long-Term Ecological Research (LTER) Network. It provides mature functionalities, well established workflows, and now publishes all ‘long-tail’ environmental data. High quality scientific metadata are enforced through automatic checks against community developed rules and the Ecological Metadata Language (EML) standard. Although the EDI repository is far along in making its data findable, accessible, interoperable, and reusable (FAIR), representatives from EDI and the LTER are developing best practices for the edge cases in environmental data publishing. One of these is the vast amount of imagery taken in the context of ecological research, ranging from wildlife camera traps to plankton imaging systems to aerial photography. Many images are used in biodiversity research for community analyses (e.g., individual counts, species cover, biovolume, productivity), while others are taken to study animal behavior and landscape-level change. Some examples from the LTER Network include: using photos of a heron colony to measure provisioning rates for chicks (Clarkson and Erwin 2018) or identifying changes in plant cover and functional type through time (Peters et al. 2020). Multi-spectral images are employed to identify prairie species. Underwater photo quads are used to monitor changes in benthic biodiversity (Edmunds 2015). Sosik et al. (2020) used a continuous Imaging FlowCytobot to identify and measure phyto- and microzooplankton. Cameras at McMurdo Dry Valleys assess snow and ice cover on Antarctic lakes allowing estimation of primary production (Myers 2019). It has been standard practice to publish numerical data extracted from images in EDI; however, the supporting imagery generally has not been made publicly available. Our goal in developing best practices for documenting and archiving these images is for them to be discovered and re-used. Our examples demonstrate several issues. The research questions, and hence, the image subjects are variable. Images frequently come in logical sets of time series. The size of such sets can be large and only some images may be contributed to a dedicated specialized repository. Finally, these images are taken in a larger monitoring context where many other environmental data are collected at the same time and location. Currently, a typical approach to publishing image data in EDI are packages containing compressed (ZIP or tar) files with the images, a directory manifest with additional image-specific metadata, and a package-level EML metadata file. Images in the compressed archive may be organized within directories with filenames corresponding to treatments, locations, time periods, individuals, or other grouping attributes. Additionally, the directory manifest table has columns for each attribute. Package-level metadata include standard coverage elements (e.g., date, time, location) and sampling methods. This approach of archiving logical ‘sets’ of images reduces the effort of providing metadata for each image when most information would be repeated, but at the expense of not making every image individually searchable. The latter may be overcome if the provided manifest contains standard metadata that would allow searching and automatic integration with other images. 
    more » « less