Sediments covering Arctic continental shelves are uniquely impacted by ice processes. Delivery of sediments is generally limited to the summer, when rivers are ice free, permafrost bluffs are thawing, and sea ice is undergoing its seasonal retreat. Once delivered to the coastal zone, sediments follow complex pathways to their final depocenters—for example, fluvial sediments may experience enhanced seaward advection in the spring due to routing under nearshore sea ice; during the open-water season, boundary-layer transport may be altered by strong stratification in the ocean due to ice melt; during the fall storm season, sediments may be entrained into sea ice through the production of anchor ice and frazil; and in the winter, large ice keels more than 20 m tall plow the seafloor (sometimes to seabed depths of 1–2 m), creating a type of physical mixing that dwarfs the decimeter-scale mixing from bioturbation observed in lower-latitude shelf systems. This review summarizes the work done on subtidal sediment dynamics over the last 50 years in Arctic shelf systems backed by soft-sediment coastlines and suggests directions for future sediment studies in a changing Arctic. Reduced sea ice, increased wave energy, and increased sediment supply from bluffs (and possibly rivers) will likely alter marine sediment dynamics in the Arctic now and into the future.
more »
« less
Nearshore ice complex breakup is controlled by a balance between thermal and mechanical processes
Abstract Shore ice is an important facet of cold‐climate coastal geomorphology yet is generally understudied in comparison to other aspects such as nearshore hydrodynamics. Climate change is resulting in more dynamic shore ice regimes (i.e., shortened ice season and multiple freeze–thaw cycles); thus, a clear understanding of the role of shore ice in coastal geomorphic evolution is needed. The presence of shore ice is generally thought to provide the coast a protective buffer from storm waves though some studies have indicated enhanced nearshore erosion and sediment transport associated with ice development. This is particularly apparent during the breakup phase of shore ice as sediment can be scoured from the bed, deposited in place, or transported offshore. Given this, understanding the mechanics of shore ice breakup is critical. This study documents the first combined field and laboratory evaluation of the physical conditions leading to shore ice breakup, detailing the complex interplay between thermal and mechanical processes in ice deterioration. Through a wave tank experiment as well as field observations, wave impacts alone are shown to be unlikely to cause breakup of shore ice and thermal weakening is required. This has important implications both for predicting when ice will break up as well as for identifying potential nearshore sediment transport pathways. If ice breaks up entirely from thermal degradation, then sediment is likely to be deposited in place, whereas if ice breaks up from a combination of thermal degradation and wave impact, then sediment can be redistributed across the shoreface. Monitoring of meteorological conditions during ice breakup can likely be used as a first‐order predictor of geomorphic changes resulting from shore ice deterioration.
more »
« less
- PAR ID:
- 10481130
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 48
- Issue:
- 15
- ISSN:
- 0197-9337
- Format(s):
- Medium: X Size: p. 3315-3329
- Size(s):
- p. 3315-3329
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year to year. Various activities, ranging from marine transport to the use of sea ice as a platform for industrial activity or winter travel, are af- fected by variations in the timing of breakup and freeze-up, resulting in a need for indicators to document the regional and temporal variations in coastal areas. The primary objec- tive of this study is to use locally based metrics to construct indicators of breakup and freeze-up in the Arctic and subarc- tic coastal environment. The indicators developed here are based on daily sea ice concentrations derived from satellite passive-microwave measurements. The “day of year” indica- tors are designed to optimize value for users while building on past studies characterizing breakup and freeze-up dates in the open pack ice. Relative to indicators for broader adja- cent seas, the coastal indicators generally show later breakup at sites known to have landfast ice. The coastal indicators also show earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to ear- lier freezing of shallow-water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator varia- tions shows that the local breakup and freeze-up indicators have greater spatial variability than corresponding metrics based on regional ice coverage. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in the synthesized metrics of coastal breakup and freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global indica- tors such as sea ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response.more » « less
-
Abstract Seasonal sea ice impacts Arctic delta morphology by limiting wave and river influences and altering river‐to‐ocean sediment pathways. However, the long‐term effects of sea ice on delta morphology remain poorly known. To address this gap, 1D morphologic and hydrodynamic simulations were set up in Delft3D to study the 1500‐year development of Arctic deltas during the most energetic Arctic seasons: spring break‐up/freshet, summer open‐water, and autumn freeze‐up. The model focused on the deltaic clinoform (i.e., the vertical cross‐sectional view of a delta) and used a floating barge structure to mimic the effects of sea ice on nearshore waters. From the simulations we find that ice‐affected deltas form a compound clinoform morphology, that is, a coupled subaerial and subaqueous delta separated by a subaqueous platform that resembles the shallow platform observed offshore of Arctic deltas. Nearshore sea ice affects river dynamics and promotes sediment bypassing during sea ice break‐up, forming an offshore depocenter and building a subaqueous platform. A second depocenter forms closer to shore during the open‐water season at the subaerial foreset that aids in outbuilding the subaerial delta and assists in developing the compound clinoform morphology. Simulations of increased wave activity and reduced sea‐ice, likely futures under a warming Arctic climate, show that deltas may lose their shallow platform on centennial timescales by (a) sediment infill and/or (b) wave erosion. This study highlights the importance of sea ice on Arctic delta morphology and the potential morphologic transitions these high‐latitude deltas may experience as the Arctic continues to warm.more » « less
-
null (Ed.)Coastal erosion in the Arctic has numerous internal and external environmental drivers. Internal drivers include sediment composition, permafrost properties and exposure which contribute to its spatial variability, while changing hydrometeorological conditions act as external drivers and determine the temporal evolution of shoreline retreat. To reveal the relative role of these factors, we investigated patterns of coastal dynamics in an enclosed bay in the southwestern Kara Sea, Russia, namely the Gulf of Kruzenstern, which is protected from open-sea waves by the Sharapovy Koshki Islands. Using multitemporal satellite imagery, we calculated decadal-scale retreat rates for erosional segments of the coastal plain from 1964 to 2019. In the field, we studied and described Quaternary sediments and massive ground-ice beds outcropping in the coastal bluffs. Using data from regional hydrometeorological stations and climate reanalysis (ERA), we estimated changes in the air thawing index, sea ice-free period duration, wind-wave energy and total hydrometeorological stress for the Gulf of Kruzenstern, and compared it to Kharasavey and Marre-Sale open-sea segments north and south of the gulf to understand how the hydrometeorological forcing changes in an enclosed bay. The calculated average shoreline retreat rates along the Gulf in 1964–2010 were 0.5 ± 0.2 m yr −1 ; the highest erosion of up to 1.7 ± 0.2 m yr −1 was typical for segments containing outcrops of massive ground-ice beds and facing to the northwest. These retreat rates, driven by intensive thermal denudation, are comparable to long-term rates measured along open-sea sites known from literature. As a result of recent air temperature and sea ice-free period increases, average erosion rates rose to 0.9 ± 0.7 m yr −1 in 2010–2019, with extremes of up to 2.4 ± 0.7 m yr −1 . The increased mean decadal-scale erosion rates were also associated with higher spatial variability in erosion patterns. Analysis of the air thawing index, wave energy potential and their total effect showed that inside the Gulf of Kruzenstern, 85% of coastal erosion is attributable to thermal denudation associated with the air thawing index, if we suppose that at open-sea locations, the input of wave energy and air thawing index is equal. Our findings highlight the importance of permafrost degradation and thermal denudation on increases in ice-rich permafrost bluff erosion in the Arctic.more » « less
-
Abstract Marsh lateral expansion and retreat are often attributed to sediment availability, but a causal link is difficult to establish. To shed light on this problem, we analyzed changes in salt marsh area along the ~ 200-km-long Georgia coast (USA) from the 1850s to 2010s in relation to total suspended sediment (TSS) and to proxies for river sediment input and local sediment resuspension. Marsh area is characterized by large gains and losses (up to 200 m2/m/yr), but relatively small net change (-50 to 50 m2/m/yr or -0.1 to 0.1%/yr). This has resulted in a general loss of marsh area, except close to the mouths of major rivers, where there is net gain. Net expansion rates decreased in the Savannah Estuary but increased in the Altamaha Estuary from the 1850s–1930s period to the 1930s–2010s period, which are consistent with observed decreases and likely increases in sediment discharge in the two estuaries, respectively. To explain the spatial patterns in the 1930s–2010s marsh area change, we estimated TSS from satellite measurements (2003 to 2020). Along the northern part of the Georgia coast, net marsh gain is positively correlated to the average TSS within the estuarine region. However, this correlation breaks down in more southern areas (Cumberland Sound). Coast-wide, there is a better correlation between TSS associated with new input from the rivers, estimated as the TSS difference between high-discharge (Jan–Mar) and low-discharge (Sept–Nov) months. To identify the effect of wave resuspension in the nearshore, we consider the TSS difference between high-wave, low-discharge (Sept–Nov) and low-wave, low-discharge periods (Jun–Aug). Wave resuspension is relatively uniform along the coast and does not explain spatial patterns of marsh area change. Sediment input from the nearshore is likely contributing to the estuarine sediment budget in Georgia, but it is not sufficient to prevent marsh lateral retreat. To identify the role of tidal resuspension and advection, we consider differences in TSS between low and high tide. This differential is relatively constant along most of the coast, but it is much lower in the southern part of the coast, suggesting a lower tidal action in this region. Sediment resuspended by tides is likely originating from internal recycling (i.e., erosion) within the estuary, and thus does not contribute to marsh lateral expansion. The proposed approach to partition TSS is a general demonstration and could be applied to other coastal regions.more » « less
An official website of the United States government
