skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transport across interfaces in symmetric orbifolds
A<sc>bstract</sc> We examine how conformal boundaries encode energy transport coefficients — namely transmission and reflection probabilities — of corresponding conformal interfaces in symmetric orbifold theories. These constitute a large class of irrational theories and are closely related to holographic setups. Our central goal is to compare such coefficients at the orbifold point (a field theory calculation) against their values when the orbifold is highly deformed (a gravity calculation) — an approach akin to past AdS/CFT-guided comparisons of physical quantities at strong versus weak coupling. At the orbifold point, we find that the (weighted-average) transport coefficients are simply averages of coefficients in the underlying seed theory. We then focus on the symmetric orbifold of the 𝕋4sigma model interface CFT dual to type IIB supergravity on the 3d Janus solution. We compare the holographic transmission coefficient, which was found by [1], to that of the orbifold point. We find that the profile of the transmission coefficient substantially increases with the coupling, in contrast to boundary entropy. We also present some related ideas about twisted-sector data encoded by boundary states.  more » « less
Award ID(s):
1914679
PAR ID:
10481345
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We analyze how deforming symmetric product orbifolds of two-dimensional $$ \mathcal{N} $$ N = 2 conformal field theories by an exactly marginal operator lifts higher spin currents present at the orbifold point. We find on the one hand that these currents are universally lifted regardless of the underlying CFT. On the other hand the details of the lifting are surprisingly non-universal, with dependence on the central charge of the underlying CFT and the specific marginal operator in use. In the context of the AdS/CFT correspondence, our results illustrate the mechanism by which the stringy spectrum turns into a supergravity spectrum when moving through the moduli space. They also provide further evidence that symmetric product orbifolds of $$ \mathcal{N} $$ N = 2 minimal models are holographic. 
    more » « less
  2. A<sc>bstract</sc> We give a general construction relating Narain rational conformal field theories (RCFTs) and associated 3d Chern-Simons (CS) theories to quantum stabilizer codes. Starting from an abelian CS theory with a fusion group consisting ofneven-order factors, we map a boundary RCFT to ann-qubit quantum code. When the relevant ’t Hooft anomalies vanish, we can orbifold our RCFTs and describe this gauging at the level of the code. Along the way, we give CFT interpretations of the code subspace and the Hilbert space of qubits while mapping error operations to CFT defect fields. 
    more » « less
  3. A<sc>bstract</sc> We set up a unified framework to efficiently compute the shear and bulk viscosities of strongly coupled gauge theories with gravitational holographic duals involving higher derivative corrections. We consider both Weyl4corrections, encoding the finite ’t Hooft coupling corrections of the boundary theory, and Riemann2corrections, responsible for non-equal central chargesc≠aof the theory at the ultraviolet fixed point. Our expressions for the viscosities in higher derivative holographic models are extracted from a radially conserved current and depend only on the horizon data. 
    more » « less
  4. A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling. 
    more » « less
  5. One of the few cases of AdS/CFT where both sides of the duality are under good control relates tensionlessk= 1 strings on AdS3to a two-dimensional symmetric product CFT. Building on prior observations, we propose an exact duality between string theory on a spacetime which is not asymptotically AdS and a non-conformal field theory. The bulk theory is constructed as a marginal deformation of thek= 1 AdS3string while the spacetime dual is a single trace$$ T\overline{T} $$ T T ¯ -deformed symmetric orbifold theory. As evidence for the duality, we match the one-loop bulk and boundary torus partition functions. This correspondence provides a framework to both learn about quantum gravity beyond AdS and understand how to define physical observables in$$ T\overline{T} $$ T T ¯ -deformed field theories. 
    more » « less