This content will become publicly available on December 1, 2024
With the slowdown of improvement in conventional von Neumann systems, increasing attention is paid to novel paradigms such as Ising machines. They have very different approach to solving combinatorial optimization problems. Ising machines have shown great potential in solving binary optimization problems like MaxCut. In this paper, we present an analysis of these systems in boolean satisfiability (SAT) problems. We demonstrate that, in the case of 3-SAT, a basic architecture fails to produce meaningful acceleration, largely due to the relentless progress made in conventional SAT solvers. Nevertheless, careful analysis attributes part of the failure to the lack of two important components: cubic interactions and efficient randomization heuristics. To overcome these limitations, we add proper architectural support for cubic interaction on a state-of-the-art Ising machine. More importantly, we propose a novel semantic-aware annealing schedule that makes the search-space navigation much more efficient than existing annealing heuristics. Using numerical simulations, we show that such an “Augmented” Ising Machine for SAT is projected to outperform state-of-the-art software-based, GPU-based and conventional hardware SAT solvers by orders of magnitude.
more » « less- Award ID(s):
- 2233378
- NSF-PAR ID:
- 10481390
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Mahajan, Meena ; Slivovsky, Friedrich (Ed.)Dynamical solvers for combinatorial optimization are usually based on 2superscript{nd} degree polynomial interactions, such as the Ising model. These exhibit high success for problems that map naturally to their formulation. However, SAT requires higher degree of interactions. As such, these quadratic dynamical solvers (QDS) have shown poor solution quality due to excessive auxiliary variables and the resulting increase in search-space complexity. Thus recently, a series of cubic dynamical solver (CDS) models have been proposed for SAT and other problems. We show that such problem-agnostic CDS models still perform poorly on moderate to large problems, thus motivating the need to utilize SAT-specific heuristics. With this insight, our contributions can be summarized into three points. First, we demonstrate that existing make-only heuristics perform poorly on scale-free, industrial-like problems when integrated into CDS. This motivates us to utilize break counts as well. Second, we derive a relationship between make/break and the CDS formulation to efficiently recover break counts. Finally, we utilize this relationship to propose a new make/break heuristic and combine it with a state-of-the-art CDS which is projected to solve SAT problems several orders of magnitude faster than existing software solvers.more » « less
-
Abstract A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Boolean
k -satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines. -
In this paper, we report new results on a novel Ising machine technology for solving combinatorial optimization problems using networks of coupled self-sustaining oscillators. Specifically, we present several working hardware prototypes using CMOS electronic oscillators, built on bread-boards/perfboards and PCBs, implementing Ising machines consisting of up to 240 spins with programmable couplings. We also report that, just by simulating the differential equations of such Ising machines of larger sizes, good solutions can be achieved easily on benchmark optimization problems, demonstrating the effectiveness of oscillator-based Ising machines.more » « less
-
Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks such as the Ising problem, which requires finding the ground state spin configuration of an arbitrary Ising graph. Physical Ising machines have recently been developed as an alternative to conventional exact and heuristic solvers; however, these machines typically suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS), using a hybrid scheme combining electronics and silicon-on-insulator photonics, that is capable of converging to the ground state of various four-spin graphs with high probability. The INPRIS results indicate that noise may be used as a resource to speed up the ground state search and to explore larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem and therefore compatible with optoelectronic architectures that support GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), this work suggests the potential for future systems that could achieve orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.
-
Solving computationally hard problems using conventional computing architectures is often slow and energetically inefficient. Quantum computing may help with these challenges, but it is still in the early stages of development. A quantum-inspired alternative is to build domain-specific architectures with classical hardware. Here we report a sparse Ising machine that achieves massive parallelism where the flips per second—the key figure of merit—scales linearly with the number of probabilistic bits. Our sparse Ising machine architecture, prototyped on a field-programmable gate array, is up to six orders of magnitude faster than standard Gibbs sampling on a central processing unit, and offers 5–18 times improvements in sampling speed compared with approaches based on tensor processing units and graphics processing units. Our sparse Ising machine can reliably factor semi-primes up to 32 bits and it outperforms competition-winning Boolean satisfiability solvers in approximate optimization. Moreover, our architecture can find the correct ground state, even when inexact sampling is made with faster clocks. Our problem encoding and sparsification techniques could be applied to other classical and quantum Ising machines, and our architecture could potentially be scaled to 1,000,000 or more p-bits using analogue silicon or nanodevice technologies.more » « less