Rapid advancement in machine learning is increasing the demand for effective graph data analysis. However, real-world graph data often exhibits class imbalance, leading to poor performance of standard machine learning models on underrepresented classes. To address this,Class-ImbalancedLearning onGraphs (CILG) has emerged as a promising solution that combines graph representation learning and class-imbalanced learning. This survey provides a comprehensive understanding of CILG’s current state-of-the-art, establishing the first systematic taxonomy of existing work and its connections to traditional imbalanced learning. We critically analyze recent advances and discuss key open problems. A continuously updated reading list of relevant articles and code implementations is available athttps://github.com/yihongma/CILG-Papers.
more »
« less
AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning
Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,withoutrequiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software:https://github.com/vanderschaarlab/AutoPrognosis
more »
« less
- Award ID(s):
- 1722516
- PAR ID:
- 10481512
- Editor(s):
- Guillot, Gilles
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS Digital Health
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2767-3170
- Page Range / eLocation ID:
- e0000276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs COVID-19-positive model had an AUC of 98.8%, and 92.8% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available athttps://github.com/ynaveena/COVID-19-vs-Influenzaand may have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.more » « less
-
Background and Objectives: Sepsis is a leading cause of mortality in intensive care units (ICUs). The development of a robust prognostic model utilizing patients’ clinical data could significantly enhance clinicians’ ability to make informed treatment decisions, potentially improving outcomes for septic patients. This study aims to create a novel machine-learning framework for constructing prognostic tools capable of predicting patient survival or mortality outcome. Methods: A novel dataset is created using concatenated triples of static data, temporal data, and clinical outcomes to expand data size. This structured input trains five machine learning classifiers (KNN, Logistic Regression, SVM, RF, and XGBoost) with advanced feature engineering. Models are evaluated on an independent cohort using AUROC and a new metric, 𝛾, which incorporates the F1 score, to assess discriminative power and generalizability. Results: We developed five prognostic models using the concatenated triple dataset with 10 dynamic features from patient medical records. Our analysis shows that the Extreme Gradient Boosting (XGBoost) model (AUROC = 0.777, F1 score = 0.694) and the Random Forest (RF) model (AUROC = 0.769, F1 score = 0.647), when paired with an ensemble under-sampling strategy, outperform other models. The RF model improves AUROC by 6.66% and reduces overfitting by 54.96%, while the XGBoost model shows a 0.52% increase in AUROC and a 77.72% reduction in overfitting. These results highlight our framework’s ability to enhance predictive accuracy and generalizability, particularly in sepsis prognosis. Conclusion: This study presents a novel modeling framework for predicting treatment outcomes in septic patients, designed for small, imbalanced, and high-dimensional datasets. By using temporal feature encoding, advanced sampling, and dimension reduction techniques, our approach enhances standard classifier performance. The resulting models show improved accuracy with limited data, offering valuable prognostic tools for sepsis management. This framework demonstrates the potential of machine learning in small medical datasets.more » « less
-
Abstract <bold>Background</bold>Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions. <bold>Results</bold>is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions. <bold>Conclusions</bold>is available under the MIT license from its public repository (https://github.com/jeetsukumaran/piikun), and can be installed locally using the Python package manager ‘pip‘.more » « less
-
Abstract The link between in vitro hERG ion channel inhibition and subsequent in vivo QT interval prolongation, a critical risk factor for the development of arrythmias such as Torsade de Pointes, is so well established that in vitro hERG activity alone is often sufficient to end the development of an otherwise promising drug candidate. It is therefore of tremendous interest to develop advanced methods for identifying hERG-active compounds in the early stages of drug development, as well as for proposing redesigned compounds with reduced hERG liability and preserved primary pharmacology. In this work, we present CardioGenAI, a machine learning-based framework for re-engineering both developmental and commercially available drugs for reduced hERG activity while preserving their pharmacological activity. The framework incorporates novel state-of-the-art discriminative models for predicting hERG channel activity, as well as activity against the voltage-gated NaV1.5 and CaV1.2 channels due to their potential implications in modulating the arrhythmogenic potential induced by hERG channel blockade. We applied the complete framework to pimozide, an FDA-approved antipsychotic agent that demonstrates high affinity to the hERG channel, and generated 100 refined candidates. Remarkably, among the candidates is fluspirilene, a compound which is of the same class of drugs as pimozide (diphenylmethanes) and therefore has similar pharmacological activity, yet exhibits over 700-fold weaker binding to hERG. Furthermore, we demonstrated the framework's ability to optimize hERG, NaV1.5 and CaV1.2 profiles of multiple FDA-approved compounds while maintaining the physicochemical nature of the original drugs. We envision that this method can effectively be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug development programs that have stalled due to hERG-related safety concerns. Additionally, the discriminative models can also serve independently as effective components of virtual screening pipelines. We have made all of our software open-source athttps://github.com/gregory-kyro/CardioGenAIto facilitate integration of the CardioGenAI framework for molecular hypothesis generation into drug discovery workflows. Scientific contribution This work introduces CardioGenAI, an open-source machine learning-based framework designed to re-engineer drugs for reduced hERG liability while preserving their pharmacological activity. The complete CardioGenAI framework can be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug discovery programs facing hERG-related challenges. In addition, the framework incorporates novel state-of-the-art discriminative models for predicting hERG, NaV1.5 and CaV1.2 channel activity, which can function independently as effective components of virtual screening pipelines.more » « less
An official website of the United States government

