- Award ID(s):
- 2002635
- NSF-PAR ID:
- 10481917
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics
- Date Published:
- Journal Name:
- AIAA SCITECH 2023 Forum
- ISBN:
- 978-1-62410-699-6
- Format(s):
- Medium: X
- Location:
- National Harbor, MD & Online
- Sponsoring Org:
- National Science Foundation
More Like this
-
Pepiot, Perrine (Ed.)The Global Pathway Analysis (GPA) algorithm helps analyze the chemical kinetics of complex combustion systems by identifying important global reaction pathways connecting a source species to a sink species through various important intermediate species (i.e., hub species). The present work aims to extend GPA algorithm to plasma-assisted combustion and fuel reforming systems to identify the dominant global pathways in such systems at various conditions. In addition, the present study extends the ability of GPA algorithm to identify reaction cycles involving the excitation of high-concentration species (e.g., O2, N2, and fuel) to their vibrational and electronic states and the subsequent de-excitation to their ground state, based on their significance on the reactivity of plasma-assisted systems in terms of gas heating and radical production. Provisions are made in the GPA algorithm to evaluate the reactivity of identified reaction pathways and cycles based on the element-flux transfer (i.e., dominance), heat release, and radical production rate. The newly developed Plasma-based Global Pathway Analysis (PGPA) algorithm is then used to analyze the plasma-assisted combustion of ammonia and reforming of methane. The PGPA analyses elucidated the significance of vibrational-translational cycles on the reactivity of NH3/air mixtures. Further, analyses on the production of NO ascribed the early reforming of NH3 to N2 and H2 in impeding the production of NO during plasma-assisted NH3 ignition. Lastly, the enhanced reforming of CH4/N2 mixtures using plasma has been attributed to electron impact dissociation of CH4 when compared to thermal reforming. In contrast, conventional path-Flux analysis (PFA) was found to require significant manual effort and pre-analysis intuitions from expert knowledge, making it arduous to provide valuable insights into plasma chemistry. The user-friendly and automated nature of PGPA thus provides a valuable tool for assessing the kinetics of plasma-assisted systems helpful in analyzing and, further, a foundation in reducing plasma-assisted chemistry, without the needs of expert knowledge.more » « less
-
This work aims at studying the combustion and pyrolysis characteristics of ammonia (NH3) using non-equilibrium plasma. The well known challenges of ammonia combustion and the advantages of using non-equilibrium plasma are discussed using results of zero-dimensional and one-dimensional coupled simulations. Periodic nanosecond pulsed discharges of plasma are interspersed with microsecond gaps of combustion to assess the assistance provided by plasma on overall combustion characteristics of ammonia fuel, such as ignition delay and flammability limit. Due to the lack of a reliable plasma mechanism for ammonia, a validated plasma kinetic mechanism of methane and oxygen is transformed to that of ammonia and oxygen, and is coupled with an experimentally validated ammonia combustion mechanism in this work. Another NH3 / O2 / He plasma mechanism that was recently assembled and published is also used to study the discharge and inter-pulse kinetics. A 0D model is developed to compute the rates of the electron impact reactions during the discharge, and ion-electron recombination reactions and quenching reactions along with the combustion reactions during the gap. Finally, the species concentrations and temperatures from this model are compared with those obtained using a detailed 1D model which solves for the transient electric field in addition to the species concentrations and temperature.more » « less
-
Hybrid fs/ps coherent anti-Stokes Raman scattering (CARS) is employed to investigate the vibrational temperature evolution of N2 in lean methane flames exposed to pulsed microwave irradiation. Vibrational temperature during and post microwave illumination by a 2 μs, 30 kW peak power, 3.05 GHz pulse is monitored in flames diluted with N2, N2 and CO2 , and N2 and Ar. Electric field strengths inside the microwave cavity are monitored directly using electric field probes. Temperature increases up to 140 K were observed in flames with additional Ar and CO2 dilution, whereas temperature increases by 80 K were observed in mixtures diluted with only N2 . The microwave energy deposition to excited states begins to thermalize over scales of 100 μs, however, equilibrium is not reached before excited combustion products convect out of the probe volume on the order of several 1 ms. Understanding the impact of varying bath gases on microwave interaction, magnitude of temperature rise and thermalization timescales is critical for the development and validation of new kinetic models for applications exhibiting significant degrees of thermal non-equilibrium, such as high-speed reentry flows and plasma-assisted combustion.more » « less
-
Abstract. Wetlands and freshwater bodies (mainly lakes) are the largestnatural sources of the greenhouse gas CH4 to the atmosphere. Great effortshave been made to quantify these source emissions and their uncertainties.Previous research suggests that there might be significant uncertaintiescoming from “double accounting” emissions from freshwater bodies andwetlands. Here we quantify the methane emissions from both land andfreshwater bodies in the pan-Arctic with two process-based biogeochemistrymodels by minimizing the double accounting at the landscape scale. Twonon-overlapping dynamic areal change datasets are used to drive the models.We estimate that the total methane emissions from the pan-Arctic are 36.46 ± 1.02 Tg CH4 yr−1 during 2000–2015, of which wetlands andfreshwater bodies are 21.69 ± 0.59 Tg CH4 yr−1 and 14.76 ± 0.44 Tg CH4 yr−1, respectively. Our estimation narrows thedifference between previous bottom-up (53.9 Tg CH4 yr−1) andtop-down (29 Tg CH4 yr−1) estimates. Our correlation analysisshows that air temperature is the most important driver for methane emissionsof inland water systems. Wetland emissions are also significantly affected byvapor pressure, while lake emissions are more influenced by precipitation andlandscape areal changes. Sensitivity tests indicate that pan-Arctic lakeCH4 emissions were highly influenced by air temperature but less bylake sediment carbon increase.more » « less
-
Abstract Production of coal and natural gas is responsible for one third of anthropogenic methane (CH4) emissions in the United States. Here we examine CH4emissions from coal and natural gas production in southwestern Pennsylvania. Using a top‐down methodology combining measurements of CH4and ethane, we conclude that while Environmental Protection Agency inventories appear to report emissions from coal accurately, emissions from unconventional natural gas are underreported in the region by a factor of 5 (±3). However, production‐scaled CH4emissions from unconventional gas production in the Marcellus remain small compared to other basins due to its large production per well. After normalizing emissions by energy produced, total greenhouse gas emissions from Pennsylvania unconventional natural gas production produce half the carbon footprint compared to regionally produced coal, with carbon dioxide emissions from combustion being the dominant source of greenhouse gas emissions for both sources.